Click here to Skip to main content
15,896,730 members
Articles / Mobile Apps / Android

One-Touch Casual 3D Game Based on OpenGL ES 2.0 3D Engine with Lua, Bullet, and Vorbis Support

Rate me:
Please Sign up or sign in to vote.
4.75/5 (7 votes)
8 Nov 2012CPOL5 min read 50.7K   3.3K   18  
Android-x86 native game-engine - without JNI
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#ifndef BT_BROADPHASE_PROXY_H
#define BT_BROADPHASE_PROXY_H

#include "btScalar.h" //for SIMD_FORCE_INLINE
#include "btVector3.h"
#include "btAlignedAllocator.h"


/// btDispatcher uses these types
/// IMPORTANT NOTE:The types are ordered polyhedral, implicit convex and concave
/// to facilitate type checking
/// CUSTOM_POLYHEDRAL_SHAPE_TYPE,CUSTOM_CONVEX_SHAPE_TYPE and CUSTOM_CONCAVE_SHAPE_TYPE can be used to extend Bullet without modifying source code
enum BroadphaseNativeTypes
{
	// polyhedral convex shapes
	BOX_SHAPE_PROXYTYPE,
	TRIANGLE_SHAPE_PROXYTYPE,
	TETRAHEDRAL_SHAPE_PROXYTYPE,
	CONVEX_TRIANGLEMESH_SHAPE_PROXYTYPE,
	CONVEX_HULL_SHAPE_PROXYTYPE,
	CONVEX_POINT_CLOUD_SHAPE_PROXYTYPE,
	CUSTOM_POLYHEDRAL_SHAPE_TYPE,
//implicit convex shapes
IMPLICIT_CONVEX_SHAPES_START_HERE,
	SPHERE_SHAPE_PROXYTYPE,
	MULTI_SPHERE_SHAPE_PROXYTYPE,
	CAPSULE_SHAPE_PROXYTYPE,
	CONE_SHAPE_PROXYTYPE,
	CONVEX_SHAPE_PROXYTYPE,
	CYLINDER_SHAPE_PROXYTYPE,
	UNIFORM_SCALING_SHAPE_PROXYTYPE,
	MINKOWSKI_SUM_SHAPE_PROXYTYPE,
	MINKOWSKI_DIFFERENCE_SHAPE_PROXYTYPE,
	BOX_2D_SHAPE_PROXYTYPE,
	CONVEX_2D_SHAPE_PROXYTYPE,
	CUSTOM_CONVEX_SHAPE_TYPE,
//concave shapes
CONCAVE_SHAPES_START_HERE,
	//keep all the convex shapetype below here, for the check IsConvexShape in broadphase proxy!
	TRIANGLE_MESH_SHAPE_PROXYTYPE,
	SCALED_TRIANGLE_MESH_SHAPE_PROXYTYPE,
	///used for demo integration FAST/Swift collision library and Bullet
	FAST_CONCAVE_MESH_PROXYTYPE,
	//terrain
	TERRAIN_SHAPE_PROXYTYPE,
///Used for GIMPACT Trimesh integration
	GIMPACT_SHAPE_PROXYTYPE,
///Multimaterial mesh
    MULTIMATERIAL_TRIANGLE_MESH_PROXYTYPE,
	
	EMPTY_SHAPE_PROXYTYPE,
	STATIC_PLANE_PROXYTYPE,
	CUSTOM_CONCAVE_SHAPE_TYPE,
CONCAVE_SHAPES_END_HERE,

	COMPOUND_SHAPE_PROXYTYPE,

	SOFTBODY_SHAPE_PROXYTYPE,
	HFFLUID_SHAPE_PROXYTYPE,
	HFFLUID_BUOYANT_CONVEX_SHAPE_PROXYTYPE,
	INVALID_SHAPE_PROXYTYPE,

	MAX_BROADPHASE_COLLISION_TYPES
	
};


///The btBroadphaseProxy is the main class that can be used with the Bullet broadphases. 
///It stores collision shape type information, collision filter information and a client object, typically a btCollisionObject or btRigidBody.
ATTRIBUTE_ALIGNED16(struct) btBroadphaseProxy
{

BT_DECLARE_ALIGNED_ALLOCATOR();
	
	///optional filtering to cull potential collisions
	enum CollisionFilterGroups
	{
	        DefaultFilter = 1,
	        StaticFilter = 2,
	        KinematicFilter = 4,
	        DebrisFilter = 8,
			SensorTrigger = 16,
			CharacterFilter = 32,
	        AllFilter = -1 //all bits sets: DefaultFilter | StaticFilter | KinematicFilter | DebrisFilter | SensorTrigger
	};

	//Usually the client btCollisionObject or Rigidbody class
	void*	m_clientObject;
	short int m_collisionFilterGroup;
	short int m_collisionFilterMask;
	void*	m_multiSapParentProxy;		
	int			m_uniqueId;//m_uniqueId is introduced for paircache. could get rid of this, by calculating the address offset etc.

	btVector3	m_aabbMin;
	btVector3	m_aabbMax;

	SIMD_FORCE_INLINE int getUid() const
	{
		return m_uniqueId;
	}

	//used for memory pools
	btBroadphaseProxy() :m_clientObject(0),m_multiSapParentProxy(0)
	{
	}

	btBroadphaseProxy(const btVector3& aabbMin,const btVector3& aabbMax,void* userPtr,short int collisionFilterGroup, short int collisionFilterMask,void* multiSapParentProxy=0)
		:m_clientObject(userPtr),
		m_collisionFilterGroup(collisionFilterGroup),
		m_collisionFilterMask(collisionFilterMask),
		m_aabbMin(aabbMin),
		m_aabbMax(aabbMax)
	{
		m_multiSapParentProxy = multiSapParentProxy;
	}

	

	static SIMD_FORCE_INLINE bool isPolyhedral(int proxyType)
	{
		return (proxyType  < IMPLICIT_CONVEX_SHAPES_START_HERE);
	}

	static SIMD_FORCE_INLINE bool	isConvex(int proxyType)
	{
		return (proxyType < CONCAVE_SHAPES_START_HERE);
	}

	static SIMD_FORCE_INLINE bool	isNonMoving(int proxyType)
	{
		return (isConcave(proxyType) && !(proxyType==GIMPACT_SHAPE_PROXYTYPE));
	}

	static SIMD_FORCE_INLINE bool	isConcave(int proxyType)
	{
		return ((proxyType > CONCAVE_SHAPES_START_HERE) &&
			(proxyType < CONCAVE_SHAPES_END_HERE));
	}
	static SIMD_FORCE_INLINE bool	isCompound(int proxyType)
	{
		return (proxyType == COMPOUND_SHAPE_PROXYTYPE);
	}

	static SIMD_FORCE_INLINE bool	isSoftBody(int proxyType)
	{
		return (proxyType == SOFTBODY_SHAPE_PROXYTYPE);
	}

	static SIMD_FORCE_INLINE bool isInfinite(int proxyType)
	{
		return (proxyType == STATIC_PLANE_PROXYTYPE);
	}

	static SIMD_FORCE_INLINE bool isConvex2d(int proxyType)
	{
		return (proxyType == BOX_2D_SHAPE_PROXYTYPE) ||	(proxyType == CONVEX_2D_SHAPE_PROXYTYPE);
	}

	
}
;

class btCollisionAlgorithm;

struct btBroadphaseProxy;



///The btBroadphasePair class contains a pair of aabb-overlapping objects.
///A btDispatcher can search a btCollisionAlgorithm that performs exact/narrowphase collision detection on the actual collision shapes.
ATTRIBUTE_ALIGNED16(struct) btBroadphasePair
{
	btBroadphasePair ()
		:
	m_pProxy0(0),
		m_pProxy1(0),
		m_algorithm(0),
		m_internalInfo1(0)
	{
	}

BT_DECLARE_ALIGNED_ALLOCATOR();

	btBroadphasePair(const btBroadphasePair& other)
		:		m_pProxy0(other.m_pProxy0),
				m_pProxy1(other.m_pProxy1),
				m_algorithm(other.m_algorithm),
				m_internalInfo1(other.m_internalInfo1)
	{
	}
	btBroadphasePair(btBroadphaseProxy& proxy0,btBroadphaseProxy& proxy1)
	{

		//keep them sorted, so the std::set operations work
		if (proxy0.m_uniqueId < proxy1.m_uniqueId)
        { 
            m_pProxy0 = &proxy0; 
            m_pProxy1 = &proxy1; 
        }
        else 
        { 
			m_pProxy0 = &proxy1; 
            m_pProxy1 = &proxy0; 
        }

		m_algorithm = 0;
		m_internalInfo1 = 0;

	}
	
	btBroadphaseProxy* m_pProxy0;
	btBroadphaseProxy* m_pProxy1;
	
	mutable btCollisionAlgorithm* m_algorithm;
	union { void* m_internalInfo1; int m_internalTmpValue;};//don't use this data, it will be removed in future version.

};

/*
//comparison for set operation, see Solid DT_Encounter
SIMD_FORCE_INLINE bool operator<(const btBroadphasePair& a, const btBroadphasePair& b) 
{ 
    return a.m_pProxy0 < b.m_pProxy0 || 
        (a.m_pProxy0 == b.m_pProxy0 && a.m_pProxy1 < b.m_pProxy1); 
}
*/



class btBroadphasePairSortPredicate
{
	public:

		bool operator() ( const btBroadphasePair& a, const btBroadphasePair& b )
		{
			const int uidA0 = a.m_pProxy0 ? a.m_pProxy0->m_uniqueId : -1;
			const int uidB0 = b.m_pProxy0 ? b.m_pProxy0->m_uniqueId : -1;
			const int uidA1 = a.m_pProxy1 ? a.m_pProxy1->m_uniqueId : -1;
			const int uidB1 = b.m_pProxy1 ? b.m_pProxy1->m_uniqueId : -1;

			 return uidA0 > uidB0 || 
				(a.m_pProxy0 == b.m_pProxy0 && uidA1 > uidB1) ||
				(a.m_pProxy0 == b.m_pProxy0 && a.m_pProxy1 == b.m_pProxy1 && a.m_algorithm > b.m_algorithm); 
		}
};


SIMD_FORCE_INLINE bool operator==(const btBroadphasePair& a, const btBroadphasePair& b) 
{
	 return (a.m_pProxy0 == b.m_pProxy0) && (a.m_pProxy1 == b.m_pProxy1);
}


#endif //BT_BROADPHASE_PROXY_H

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
India India
This member has not yet provided a Biography. Assume it's interesting and varied, and probably something to do with programming.

Comments and Discussions