Click here to Skip to main content
15,886,693 members
Articles / Mobile Apps / Android

One-Touch Casual 3D Game Based on OpenGL ES 2.0 3D Engine with Lua, Bullet, and Vorbis Support

Rate me:
Please Sign up or sign in to vote.
4.75/5 (7 votes)
8 Nov 2012CPOL5 min read 50.1K   3.3K   18  
Android-x86 native game-engine - without JNI
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/


#include "btSubSimplexConvexCast.h"
#include "btConvexShape.h"

#include "btMinkowskiSumShape.h"
#include "btSimplexSolverInterface.h"
#include "btPointCollector.h"
#include "btTransformUtil.h"

btSubsimplexConvexCast::btSubsimplexConvexCast (const btConvexShape* convexA,const btConvexShape* convexB,btSimplexSolverInterface* simplexSolver)
:m_simplexSolver(simplexSolver),
m_convexA(convexA),m_convexB(convexB)
{
}

///Typically the conservative advancement reaches solution in a few iterations, clip it to 32 for degenerate cases.
///See discussion about this here http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=565
#ifdef BT_USE_DOUBLE_PRECISION
#define MAX_ITERATIONS 64
#else
#define MAX_ITERATIONS 32
#endif
bool	btSubsimplexConvexCast::calcTimeOfImpact(
		const btTransform& fromA,
		const btTransform& toA,
		const btTransform& fromB,
		const btTransform& toB,
		CastResult& result)
{

	m_simplexSolver->reset();

	btVector3 linVelA,linVelB;
	linVelA = toA.getOrigin()-fromA.getOrigin();
	linVelB = toB.getOrigin()-fromB.getOrigin();

	btScalar lambda = btScalar(0.);

	btTransform interpolatedTransA = fromA;
	btTransform interpolatedTransB = fromB;

	///take relative motion
	btVector3 r = (linVelA-linVelB);
	btVector3 v;
	
	btVector3 supVertexA = fromA(m_convexA->localGetSupportingVertex(-r*fromA.getBasis()));
	btVector3 supVertexB = fromB(m_convexB->localGetSupportingVertex(r*fromB.getBasis()));
	v = supVertexA-supVertexB;
	int maxIter = MAX_ITERATIONS;

	btVector3 n;
	n.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
	bool hasResult = false;
	btVector3 c;

	btScalar lastLambda = lambda;


	btScalar dist2 = v.length2();
#ifdef BT_USE_DOUBLE_PRECISION
	btScalar epsilon = btScalar(0.0001);
#else
	btScalar epsilon = btScalar(0.0001);
#endif //BT_USE_DOUBLE_PRECISION
	btVector3	w,p;
	btScalar VdotR;
	
	while ( (dist2 > epsilon) && maxIter--)
	{
		supVertexA = interpolatedTransA(m_convexA->localGetSupportingVertex(-v*interpolatedTransA.getBasis()));
		supVertexB = interpolatedTransB(m_convexB->localGetSupportingVertex(v*interpolatedTransB.getBasis()));
		w = supVertexA-supVertexB;

		btScalar VdotW = v.dot(w);

		if (lambda > btScalar(1.0))
		{
			return false;
		}

		if ( VdotW > btScalar(0.))
		{
			VdotR = v.dot(r);

			if (VdotR >= -(SIMD_EPSILON*SIMD_EPSILON))
				return false;
			else
			{
				lambda = lambda - VdotW / VdotR;
				//interpolate to next lambda
				//	x = s + lambda * r;
				interpolatedTransA.getOrigin().setInterpolate3(fromA.getOrigin(),toA.getOrigin(),lambda);
				interpolatedTransB.getOrigin().setInterpolate3(fromB.getOrigin(),toB.getOrigin(),lambda);
				//m_simplexSolver->reset();
				//check next line
				 w = supVertexA-supVertexB;
				lastLambda = lambda;
				n = v;
				hasResult = true;
			}
		} 
		///Just like regular GJK only add the vertex if it isn't already (close) to current vertex, it would lead to divisions by zero and NaN etc.
		if (!m_simplexSolver->inSimplex(w))
			m_simplexSolver->addVertex( w, supVertexA , supVertexB);

		if (m_simplexSolver->closest(v))
		{
			dist2 = v.length2();
			hasResult = true;
			//todo: check this normal for validity
			//n=v;
			//printf("V=%f , %f, %f\n",v[0],v[1],v[2]);
			//printf("DIST2=%f\n",dist2);
			//printf("numverts = %i\n",m_simplexSolver->numVertices());
		} else
		{
			dist2 = btScalar(0.);
		} 
	}

	//int numiter = MAX_ITERATIONS - maxIter;
//	printf("number of iterations: %d", numiter);
	
	//don't report a time of impact when moving 'away' from the hitnormal
	

	result.m_fraction = lambda;
	if (n.length2() >= (SIMD_EPSILON*SIMD_EPSILON))
		result.m_normal = n.normalized();
	else
		result.m_normal = btVector3(btScalar(0.0), btScalar(0.0), btScalar(0.0));

	//don't report time of impact for motion away from the contact normal (or causes minor penetration)
	if (result.m_normal.dot(r)>=-result.m_allowedPenetration)
		return false;

	btVector3 hitA,hitB;
	m_simplexSolver->compute_points(hitA,hitB);
	result.m_hitPoint=hitB;
	return true;
}




By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
India India
This member has not yet provided a Biography. Assume it's interesting and varied, and probably something to do with programming.

Comments and Discussions