Click here to Skip to main content
15,891,136 members
Articles / Web Development / HTML

Signum Framework Tutorials Part 3 - Southwind Load

Rate me:
Please Sign up or sign in to vote.
4.62/5 (7 votes)
21 Nov 2012CPOL23 min read 24.4K   319   10  
In this part we'll write the loading application to move data from Northwind to Southwind.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Signum.Utilities;
using System.Collections;
using Signum.Utilities.Properties;
using System.Xml.Linq;

namespace Signum.Utilities.DataStructures
{
    public class DirectedGraph<T> : IEnumerable<T>
    {
        Dictionary<T, HashSet<T>> adjacency;
        public IEqualityComparer<T> Comparer { get; private set; }

        public DirectedGraph()
            : this(EqualityComparer<T>.Default)
        {
        }

        public DirectedGraph(IEqualityComparer<T> comparer)
        {
            this.Comparer = comparer;
            this.adjacency = new Dictionary<T, HashSet<T>>(comparer);
        }

        public IEnumerable<T> Nodes
        {
            get { return adjacency.Keys; }
        }

        public IEnumerable<Edge<T>> Edges
        {
            get { return adjacency.SelectMany(k => k.Value.Select(n => new Edge<T>(k.Key, n))); }
        }

        public int Count
        {
            get { return adjacency.Count; }
        }

        public int EdgesCount
        {
            get { return adjacency.Sum(k => k.Value.Count); }
        }

        public bool Contains(T node)
        {
            return adjacency.ContainsKey(node);
        }

        public bool Connected(T from, T to)
        {
            return Get(from).Contains(to);
        }

        public bool TryConnected(T from, T to)
        {
            return TryGet(from).TryCS(hs => hs.Contains(to)) ?? false;
        }

        public void Add(T from)
        {
            TryGetOrAdd(from);
        }

        public void Add(T from, T to)
        {
            TryGetOrAdd(from).Add(to);
            TryGetOrAdd(to);
        }

        public void Add(T from, params T[] elements)
        {
            var f = TryGetOrAdd(from);
            foreach (var item in elements)
            {
                TryGetOrAdd(item);
                f.Add(item);
            }
        }

        public void Add(T from, IEnumerable<T> elements)
        {
            var f = TryGetOrAdd(from);
            foreach (var item in elements)
            {
                TryGetOrAdd(item);
                f.Add(item);
            }
        }

        public bool Remove(T from, T to)
        {
            var hashSet = adjacency.TryGetC(from);
            if (hashSet == null)
                return false;

            return hashSet.Remove(to);
        }

        public bool Remove(Edge<T> edge)
        {
            return Remove(edge.From, edge.To);
        }

        public void RemoveAll(IEnumerable<Edge<T>> edges)
        {
            foreach (var edge in edges)
                Remove(edge.From, edge.To);
        }

        public bool RemoveFullNode(T node)
        {
            if (!adjacency.ContainsKey(node))
                return false;

            return RemoveFullNode(node, InverseRelatedTo(node));
        }

        /// <summary>
        /// Unsafer but faster
        /// </summary>
        public bool RemoveFullNode(T node, IEnumerable<T> inverseRelated)
        {
            if (!adjacency.ContainsKey(node))
                return false;

            adjacency.Remove(node);
            foreach (var n in inverseRelated)
                Remove(n, node);

            return true;
        }

        public static void RemoveFullNodeSymetric(DirectedGraph<T> original, DirectedGraph<T> inverse, T node)
        {
            HashSet<T> from = inverse.RelatedTo(node);
            HashSet<T> to = original.RelatedTo(node);

            original.RemoveFullNode(node, from);
            inverse.RemoveFullNode(node, to);
        }

        HashSet<T> TryGet(T node)
        {
            return adjacency.TryGetC(node);
        }

        HashSet<T> Get(T node)
        {
            var result = adjacency.TryGetC(node);
            if (result == null)
                throw new InvalidOperationException("The node {0} is not in the graph".Formato(node));
            return result;
        }

        HashSet<T> TryGetOrAdd(T node)
        {
            return adjacency.GetOrCreate(node, () => new HashSet<T>(Comparer));
        }

        public HashSet<T> TryRelatedTo(T node)
        {
            return TryGet(node) ?? new HashSet<T>();
        }

        public HashSet<T> RelatedTo(T node)
        {
            return Get(node);
        }

        /// <summary>
        /// Costly
        /// </summary>
        public IEnumerable<T> InverseRelatedTo(T node)
        {
            return this.Where(n => Connected(n, node));
        }

        /// <summary>
        /// Recursive relationships
        /// </summary>
        public HashSet<T> IndirectlyRelatedTo(T node)
        {
            HashSet<T> set = new HashSet<T>();
            IndirectlyRelatedTo(node, set);
            return set;
        }

        void IndirectlyRelatedTo(T node, HashSet<T> set)
        {
            foreach (var item in RelatedTo(node))
                if (set.Add(item))
                    IndirectlyRelatedTo(item, set);
        }

        public HashSet<T> IndirectlyRelatedTo(T node, Func<T, bool> condition)
        {
            HashSet<T> set = new HashSet<T>();
            IndirectlyRelatedTo(node, set, condition);
            return set;
        }

        void IndirectlyRelatedTo(T node, HashSet<T> set, Func<T, bool> condition)
        {
            foreach (var item in RelatedTo(node).Where(condition))
                if (set.Add(item))
                    IndirectlyRelatedTo(item, set, condition);
        }


        public void DepthExplore(T node, Func<T, bool> condition, Action<T> preAction, Action<T> postAction)
        {
            if (condition != null && !condition(node))
                return;

            if (preAction != null)
                preAction(node);

            foreach (T item in RelatedTo(node))
                DepthExplore(item, condition, preAction, postAction);

            if (postAction != null)
                postAction(node);
        }

        public void BreadthExplore(T root, Func<T, bool> condition, Action<T> action)
        {
            Queue<T> queue = new Queue<T>();
            queue.Enqueue(root);

            while (queue.Count > 0)
            {
                T node = queue.Dequeue();
                if (!condition(node))
                    continue;

                action(node);

                queue.EnqueueRange(RelatedTo(node));
            }
        }


        public DirectedGraph<T> Inverse()
        {
            DirectedGraph<T> result = new DirectedGraph<T>(Comparer);
            foreach (var item in Nodes)
            {
                result.Add(item);
                foreach (var related in RelatedTo(item))
                {
                    result.Add(related, item);
                }
            }
            return result;
        }

        public DirectedGraph<T> UndirectedGraph()
        {
            return this.Inverse().Do(g => g.UnionWith(this));
        }

        public void UnionWith(DirectedGraph<T> other)
        {
            foreach (var item in other.Nodes)
                Add(item, other.RelatedTo(item));
        }

        public DirectedGraph<T> Clone()
        {
            return new DirectedGraph<T>(Comparer).Do(g => g.UnionWith(this));
        }

        public static DirectedGraph<T> Generate(T root, Func<T, IEnumerable<T>> expandFunction)
        {
            return Generate(root, expandFunction, EqualityComparer<T>.Default);
        }

        public static DirectedGraph<T> Generate(T root, Func<T, IEnumerable<T>> expandFunction, IEqualityComparer<T> comparer)
        {
            DirectedGraph<T> result = new DirectedGraph<T>(comparer);
            result.Expand(root, expandFunction);
            return result;
        }

        public static DirectedGraph<T> Generate(IEnumerable<T> roots, Func<T, IEnumerable<T>> expandFunction)
        {
            return Generate(roots, expandFunction, EqualityComparer<T>.Default);
        }

        public static DirectedGraph<T> Generate(IEnumerable<T> roots, Func<T, IEnumerable<T>> expandFunction, IEqualityComparer<T> comparer)
        {
            DirectedGraph<T> result = new DirectedGraph<T>(comparer);
            foreach (var root in roots)
                result.Expand(root, expandFunction);
            return result;
        }

        public void Expand(T node, Func<T, IEnumerable<T>> expandFunction)
        {
            if (Contains(node)) return;

            Add(node); //necesario para ciclos
            foreach (var item in expandFunction(node))
            {
                Expand(item, expandFunction);
                Add(node, item);
            }
        }

        public override string ToString()
        {
            return adjacency.ToString(kvp => "{0}=>{1};".Formato(kvp.Key, kvp.Value.ToString(",")), "\r\n");
        }

        public string Graphviz()
        {
            return Graphviz("Graph", a => a.ToString());
        }

        public string Graphviz(string name, Func<T, string> getName)
        {
            int num = 0;
            Dictionary<T, int> nodeDic = Nodes.ToDictionary(n => n, n => num++, Comparer);

            string nodes = Nodes.ToString(e => "   {0} [ label =\"{1}\"];".Formato(nodeDic[e], getName(e)), "\r\n");

            string edges = Edges.ToString(e => "   {0} -> {1};".Formato(nodeDic[e.From], nodeDic[e.To]), "\r\n");

            return "digraph \"{0}\"\r\n{{\r\n{1}\r\n{2}\r\n}}".Formato(name, nodes, edges);
        }

        public XDocument ToDGML()
        {
            return ToDGML(a => a.ToString() ?? "[null]", a => ColorGenerator.ColorFor(a.GetType().FullName.GetHashCode()));
        }

        public XDocument ToDGML(Func<T, string> getNodeLabel, Func<T, string> getColor)
        {
            return ToDGML(n => new[]
            {
                new XAttribute("Label", getNodeLabel(n)),
                new XAttribute("Background", getColor(n))
            });
        }
            
        public XDocument ToDGML(Func<T, XAttribute[]> attributes)
        {
            int num = 0;
            Dictionary<T, int> nodeDic = Nodes.ToDictionary(n => n, n => num++, Comparer);

            XNamespace ns = "http://schemas.microsoft.com/vs/2009/dgml";

            return new XDocument(
                new XElement(ns + "DirectedGraph",
                    new XElement(ns + "Nodes",
                        Nodes.Select(n => new XElement(ns + "Node",
                            new XAttribute("Id", nodeDic[n]),
                            attributes(n)))),
                    new XElement(ns + "Links",
                        Edges.Select(e => new XElement(ns + "Link",
                            new XAttribute("Source", nodeDic[e.From]),
                            new XAttribute("Target", nodeDic[e.To]))))
                 )
            );
        }

        #region IEnumerable<T> Members

        public IEnumerator<T> GetEnumerator()
        {
            return adjacency.Keys.GetEnumerator();
        }

        IEnumerator IEnumerable.GetEnumerator()
        {
            return adjacency.Keys.GetEnumerator();
        }

        #endregion

        public IEnumerable<HashSet<T>> CompilationOrderGroups()
        {
            DirectedGraph<T> clone = this.Clone();
            DirectedGraph<T> inv = this.Inverse();

            while (clone.Count > 0)
            {
                var leaves = clone.Sinks();
                foreach (var node in leaves)
                    clone.RemoveFullNode(node, inv.RelatedTo(node));
                yield return leaves;
            }
        }

        public IEnumerable<T> CompilationOrder()
        {
            return CompilationOrderGroups().SelectMany(e => e);
        }


        /// <summary>
        /// A simple but effective linear-time heuristic constructs a vertex ordering,
        /// just as in the topological sort heuristic above, and deletes any arc going from right to left. 
        /// 
        /// This heuristic builds up the ordering from the outside in based on the in- and out-degrees of each vertex. 
        /// - Any vertex of in-degree 0 is a source and can be placed first in the ordering. 
        /// - Any vertex of out-degree 0 is a sink and can be placed last in the ordering, again without violating any constraints. 
        /// - If not, we find the vertex with the maximum difference between in- and out-degree, 
        /// and place it on the side of the permutation that will salvage the greatest number of constraints. 
        /// Delete any vertex from the DAG after positioning it and repeat until the graph is empty.
        /// </summary>
        /// <returns></returns>

        public DirectedGraph<T> FeedbackEdgeSet()
        {
            DirectedGraph<T> result = new DirectedGraph<T>(Comparer);

            DirectedGraph<T> clone = this.Clone();
            DirectedGraph<T> inv = this.Inverse();

            HashSet<T> head = new HashSet<T>();  // for sources
            HashSet<T> tail = new HashSet<T>();  // for sinks
            while (clone.Count > 0)
            {
                var sinks = clone.Sinks();
                if (sinks.Count() != 0)
                {
                    foreach (var sink in sinks)
                    {
                        DirectedGraph<T>.RemoveFullNodeSymetric(clone, inv, sink);
                        tail.Add(sink);
                    }
                    continue;
                }

                var sources = inv.Sinks();
                if (sources.Count() != 0)
                {
                    foreach (var source in sources)
                    {
                        DirectedGraph<T>.RemoveFullNodeSymetric(clone, inv, source);
                        head.Add(source);
                    }
                    continue;
                }

                Func<T, int> fanInOut = n => clone.RelatedTo(n).Count() - inv.RelatedTo(n).Count();

                MinMax<T> mm = clone.WithMinMaxPair(fanInOut);

                if (fanInOut(mm.Max) > -fanInOut(mm.Min))
                {
                    T node = mm.Max;
                    foreach (var n in inv.RelatedTo(node))
                        result.Add(node, n);
                    DirectedGraph<T>.RemoveFullNodeSymetric(clone, inv, node);
                    head.Add(node);
                }
                else
                {
                    T node = mm.Min;
                    foreach (var n in clone.RelatedTo(node))
                        result.Add(node, n);
                    DirectedGraph<T>.RemoveFullNodeSymetric(clone, inv, node);
                    head.Add(node);
                }
            }

            return result;
        }

        private HashSet<T> Sinks()
        {
            return adjacency.Where(a => a.Value.Count == 0).Select(a => a.Key).ToHashSet();
        }

        public DirectedGraph<T> WhereEdges(Func<Edge<T>, bool> condition)
        {
            DirectedGraph<T> result = new DirectedGraph<T>(Comparer);
            foreach (var item in Nodes)
                result.Add(item, RelatedTo(item).Where(to => condition(new Edge<T>(item, to))));
            return result;
        }

        public List<T> ShortestPath(T from, T to)
        {
            //http://en.wikipedia.org/wiki/Dijkstra's_algorithm

            Dictionary<T, int> distance = this.ToDictionary(e => e, e => int.MaxValue, Comparer);
            Dictionary<T, T> previous = new Dictionary<T, T>(Comparer);

            distance[from] = 0;
            PriorityQueue<T> queue = new PriorityQueue<T>((a, b) => distance[a].CompareTo(distance[b]));
            queue.PushAll(this);

            while (queue.Count > 0)
            {
                T u = queue.Peek();
                if (distance[u] == int.MaxValue)
                    return null;

                int newDist = distance[u] + 1;
                foreach (var v in RelatedTo(u))
                {
                    if (newDist < distance[v])
                    {
                        distance[v] = newDist;
                        queue.Update(v);
                        previous[v] = u;
                    }
                }
                queue.Pop();

                if (Comparer.Equals(u, to))
                    break;
            }

            return to.For(n => previous.ContainsKey(n), n => previous[n]).Reverse().ToList();
        }
    }

    public struct Edge<T>
    {
        public readonly T From;
        public readonly T To;

        public Edge(T from, T to)
        {
            this.From = from;
            this.To = to;
        }

        public override string ToString()
        {
            return "{0}->{1}".Formato(From, To);
        }
    };

    public static class ColorGenerator
    {
        public static string ColorFor(int value)
        {
            return "#" + (value & 0xffffff).ToString("X6");
        }
    }
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Software Developer (Senior) Signum Software
Spain Spain
I'm Computer Scientist, one of the founders of Signum Software, and the lead developer behind Signum Framework.

www.signumframework.com

I love programming in C#, Linq, Compilers, Algorithms, Functional Programming, Computer Graphics, Maths...

Comments and Discussions