Click here to Skip to main content
15,881,757 members
Articles / High Performance Computing / Vectorization

A C++ String Class

Rate me:
Please Sign up or sign in to vote.
4.96/5 (29 votes)
3 Jan 2015CPOL13 min read 120.5K   2.6K   93  
A fast, reference counted, copy-on-write string class
#include "stdafx.h"

/*  -- translated by f2c (version 19940927).
   You must link the resulting object file with the libraries:
	-lf2c -lm   (in that order)
*/

#include "hnum_f2c.h"
namespace harlinn
{
    namespace numerics
    {
        namespace SuperLU
        {
                int ctrsv_(char *uplo, char *trans, char *diag, integer *n, complex *a, integer *lda, complex *x, integer *incx)
                {


                    /* System generated locals */
                    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
                    complex q__1, q__2, q__3;

                    /* Builtin functions */
                    void c_div(complex *, complex *, complex *), r_cnjg(complex *, complex *);

                    /* Local variables */
                    static integer info;
                    static complex temp;
                    static integer i, j;
                    static integer ix, jx, kx;
                    static logical noconj, nounit;


                /*  Purpose   
                    =======   

                    CTRSV  solves one of the systems of equations   

                       A*x = b,   or   A'*x = b,   or   conjg( A' )*x = b,   

                    where b and x are n element vectors and A is an n by n unit, or   
                    non-unit, upper or lower triangular matrix.   

                    No test for singularity or near-singularity is included in this   
                    routine. Such tests must be performed before calling this routine.   

                    Parameters   
                    ==========   

                    UPLO   - CHARACTER*1.   
                             On entry, UPLO specifies whether the matrix is an upper or   
                             lower triangular matrix as follows:   

                                UPLO = 'U' or 'u'   A is an upper triangular matrix.   

                                UPLO = 'L' or 'l'   A is a lower triangular matrix.   

                             Unchanged on exit.   

                    TRANS  - CHARACTER*1.   
                             On entry, TRANS specifies the equations to be solved as   
                             follows:   

                                TRANS = 'N' or 'n'   A*x = b.   

                                TRANS = 'T' or 't'   A'*x = b.   

                                TRANS = 'C' or 'c'   conjg( A' )*x = b.   

                             Unchanged on exit.   

                    DIAG   - CHARACTER*1.   
                             On entry, DIAG specifies whether or not A is unit   
                             triangular as follows:   

                                DIAG = 'U' or 'u'   A is assumed to be unit triangular.   

                                DIAG = 'N' or 'n'   A is not assumed to be unit   
                                                    triangular.   

                             Unchanged on exit.   

                    N      - INTEGER.   
                             On entry, N specifies the order of the matrix A.   
                             N must be at least zero.   
                             Unchanged on exit.   

                    A      - COMPLEX          array of DIMENSION ( LDA, n ).   
                             Before entry with  UPLO = 'U' or 'u', the leading n by n   
                             upper triangular part of the array A must contain the upper 
  
                             triangular matrix and the strictly lower triangular part of 
  
                             A is not referenced.   
                             Before entry with UPLO = 'L' or 'l', the leading n by n   
                             lower triangular part of the array A must contain the lower 
  
                             triangular matrix and the strictly upper triangular part of 
  
                             A is not referenced.   
                             Note that when  DIAG = 'U' or 'u', the diagonal elements of 
  
                             A are not referenced either, but are assumed to be unity.   
                             Unchanged on exit.   

                    LDA    - INTEGER.   
                             On entry, LDA specifies the first dimension of A as declared 
  
                             in the calling (sub) program. LDA must be at least   
                             max( 1, n ).   
                             Unchanged on exit.   

                    X      - COMPLEX          array of dimension at least   
                             ( 1 + ( n - 1 )*abs( INCX ) ).   
                             Before entry, the incremented array X must contain the n   
                             element right-hand side vector b. On exit, X is overwritten 
  
                             with the solution vector x.   

                    INCX   - INTEGER.   
                             On entry, INCX specifies the increment for the elements of   
                             X. INCX must not be zero.   
                             Unchanged on exit.   


                    Level 2 Blas routine.   

                    -- Written on 22-October-1986.   
                       Jack Dongarra, Argonne National Lab.   
                       Jeremy Du Croz, Nag Central Office.   
                       Sven Hammarling, Nag Central Office.   
                       Richard Hanson, Sandia National Labs.   



                       Test the input parameters.   

    
                   Parameter adjustments   
                       Function Body */
                #define X(I) x[(I)-1]

                #define A(I,J) a[(I)-1 + ((J)-1)* ( *lda)]

                    info = 0;
                    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	                info = 1;
                    } else if (! lsame_(trans, "N") && ! lsame_(trans, "T") &&
	                     ! lsame_(trans, "C")) {
	                info = 2;
                    } else if (! lsame_(diag, "U") && ! lsame_(diag, "N")) {
	                info = 3;
                    } else if (*n < 0) {
	                info = 4;
                    }
                    else if ( *lda < std::max( 1, *n ) )
                    {
	                info = 6;
                    } else if (*incx == 0) {
	                info = 8;
                    }
                    if (info != 0) {
	                xerbla_("CTRSV ", &info);
	                return 0;
                    }

                /*     Quick return if possible. */

                    if (*n == 0) {
	                return 0;
                    }

                    noconj = lsame_(trans, "T");
                    nounit = lsame_(diag, "N");

                /*     Set up the start point in X if the increment is not unity. This   
                       will be  ( N - 1 )*INCX  too small for descending loops. */

                    if (*incx <= 0) {
	                kx = 1 - (*n - 1) * *incx;
                    } else if (*incx != 1) {
	                kx = 1;
                    }

                /*     Start the operations. In this version the elements of A are   
                       accessed sequentially with one pass through A. */

                    if (lsame_(trans, "N")) {

                /*        Form  x := inv( A )*x. */

	                if (lsame_(uplo, "U")) {
	                    if (*incx == 1) {
		                for (j = *n; j >= 1; --j) {
		                    i__1 = j;
		                    if (X(j).r != 0.f || X(j).i != 0.f) {
			                if (nounit) {
			                    i__1 = j;
			                    c_div(&q__1, &X(j), &A(j,j));
			                    X(j).r = q__1.r, X(j).i = q__1.i;
			                }
			                i__1 = j;
			                temp.r = X(j).r, temp.i = X(j).i;
			                for (i = j - 1; i >= 1; --i) {
			                    i__1 = i;
			                    i__2 = i;
			                    i__3 = i + j * a_dim1;
			                    q__2.r = temp.r * A(i,j).r - temp.i * A(i,j).i, 
				                    q__2.i = temp.r * A(i,j).i + temp.i * A(i,j).r;
			                    q__1.r = X(i).r - q__2.r, q__1.i = X(i).i - 
				                    q__2.i;
			                    X(i).r = q__1.r, X(i).i = q__1.i;
                /* L10: */
			                }
		                    }
                /* L20: */
		                }
	                    } else {
		                jx = kx + (*n - 1) * *incx;
		                for (j = *n; j >= 1; --j) {
		                    i__1 = jx;
		                    if (X(jx).r != 0.f || X(jx).i != 0.f) {
			                if (nounit) {
			                    i__1 = jx;
			                    c_div(&q__1, &X(jx), &A(j,j));
			                    X(jx).r = q__1.r, X(jx).i = q__1.i;
			                }
			                i__1 = jx;
			                temp.r = X(jx).r, temp.i = X(jx).i;
			                ix = jx;
			                for (i = j - 1; i >= 1; --i) {
			                    ix -= *incx;
			                    i__1 = ix;
			                    i__2 = ix;
			                    i__3 = i + j * a_dim1;
			                    q__2.r = temp.r * A(i,j).r - temp.i * A(i,j).i, 
				                    q__2.i = temp.r * A(i,j).i + temp.i * A(i,j).r;
			                    q__1.r = X(ix).r - q__2.r, q__1.i = X(ix).i - 
				                    q__2.i;
			                    X(ix).r = q__1.r, X(ix).i = q__1.i;
                /* L30: */
			                }
		                    }
		                    jx -= *incx;
                /* L40: */
		                }
	                    }
	                } else {
	                    if (*incx == 1) {
		                i__1 = *n;
		                for (j = 1; j <= *n; ++j) {
		                    i__2 = j;
		                    if (X(j).r != 0.f || X(j).i != 0.f) {
			                if (nounit) {
			                    i__2 = j;
			                    c_div(&q__1, &X(j), &A(j,j));
			                    X(j).r = q__1.r, X(j).i = q__1.i;
			                }
			                i__2 = j;
			                temp.r = X(j).r, temp.i = X(j).i;
			                i__2 = *n;
			                for (i = j + 1; i <= *n; ++i) {
			                    i__3 = i;
			                    i__4 = i;
			                    i__5 = i + j * a_dim1;
			                    q__2.r = temp.r * A(i,j).r - temp.i * A(i,j).i, 
				                    q__2.i = temp.r * A(i,j).i + temp.i * A(i,j).r;
			                    q__1.r = X(i).r - q__2.r, q__1.i = X(i).i - 
				                    q__2.i;
			                    X(i).r = q__1.r, X(i).i = q__1.i;
                /* L50: */
			                }
		                    }
                /* L60: */
		                }
	                    } else {
		                jx = kx;
		                i__1 = *n;
		                for (j = 1; j <= *n; ++j) {
		                    i__2 = jx;
		                    if (X(jx).r != 0.f || X(jx).i != 0.f) {
			                if (nounit) {
			                    i__2 = jx;
			                    c_div(&q__1, &X(jx), &A(j,j));
			                    X(jx).r = q__1.r, X(jx).i = q__1.i;
			                }
			                i__2 = jx;
			                temp.r = X(jx).r, temp.i = X(jx).i;
			                ix = jx;
			                i__2 = *n;
			                for (i = j + 1; i <= *n; ++i) {
			                    ix += *incx;
			                    i__3 = ix;
			                    i__4 = ix;
			                    i__5 = i + j * a_dim1;
			                    q__2.r = temp.r * A(i,j).r - temp.i * A(i,j).i, 
				                    q__2.i = temp.r * A(i,j).i + temp.i * A(i,j).r;
			                    q__1.r = X(ix).r - q__2.r, q__1.i = X(ix).i - 
				                    q__2.i;
			                    X(ix).r = q__1.r, X(ix).i = q__1.i;
                /* L70: */
			                }
		                    }
		                    jx += *incx;
                /* L80: */
		                }
	                    }
	                }
                    } else {

                /*        Form  x := inv( A' )*x  or  x := inv( conjg( A' ) )*x. */

	                if (lsame_(uplo, "U")) {
	                    if (*incx == 1) {
		                i__1 = *n;
		                for (j = 1; j <= *n; ++j) {
		                    i__2 = j;
		                    temp.r = X(j).r, temp.i = X(j).i;
		                    if (noconj) {
			                i__2 = j - 1;
			                for (i = 1; i <= j-1; ++i) {
			                    i__3 = i + j * a_dim1;
			                    i__4 = i;
			                    q__2.r = A(i,j).r * X(i).r - A(i,j).i * X(
				                    i).i, q__2.i = A(i,j).r * X(i).i + 
				                    A(i,j).i * X(i).r;
			                    q__1.r = temp.r - q__2.r, q__1.i = temp.i - 
				                    q__2.i;
			                    temp.r = q__1.r, temp.i = q__1.i;
                /* L90: */
			                }
			                if (nounit) {
			                    c_div(&q__1, &temp, &A(j,j));
			                    temp.r = q__1.r, temp.i = q__1.i;
			                }
		                    } else {
			                i__2 = j - 1;
			                for (i = 1; i <= j-1; ++i) {
			                    r_cnjg(&q__3, &A(i,j));
			                    i__3 = i;
			                    q__2.r = q__3.r * X(i).r - q__3.i * X(i).i, 
				                    q__2.i = q__3.r * X(i).i + q__3.i * X(
				                    i).r;
			                    q__1.r = temp.r - q__2.r, q__1.i = temp.i - 
				                    q__2.i;
			                    temp.r = q__1.r, temp.i = q__1.i;
                /* L100: */
			                }
			                if (nounit) {
			                    r_cnjg(&q__2, &A(j,j));
			                    c_div(&q__1, &temp, &q__2);
			                    temp.r = q__1.r, temp.i = q__1.i;
			                }
		                    }
		                    i__2 = j;
		                    X(j).r = temp.r, X(j).i = temp.i;
                /* L110: */
		                }
	                    } else {
		                jx = kx;
		                i__1 = *n;
		                for (j = 1; j <= *n; ++j) {
		                    ix = kx;
		                    i__2 = jx;
		                    temp.r = X(jx).r, temp.i = X(jx).i;
		                    if (noconj) {
			                i__2 = j - 1;
			                for (i = 1; i <= j-1; ++i) {
			                    i__3 = i + j * a_dim1;
			                    i__4 = ix;
			                    q__2.r = A(i,j).r * X(ix).r - A(i,j).i * X(
				                    ix).i, q__2.i = A(i,j).r * X(ix).i + 
				                    A(i,j).i * X(ix).r;
			                    q__1.r = temp.r - q__2.r, q__1.i = temp.i - 
				                    q__2.i;
			                    temp.r = q__1.r, temp.i = q__1.i;
			                    ix += *incx;
                /* L120: */
			                }
			                if (nounit) {
			                    c_div(&q__1, &temp, &A(j,j));
			                    temp.r = q__1.r, temp.i = q__1.i;
			                }
		                    } else {
			                i__2 = j - 1;
			                for (i = 1; i <= j-1; ++i) {
			                    r_cnjg(&q__3, &A(i,j));
			                    i__3 = ix;
			                    q__2.r = q__3.r * X(ix).r - q__3.i * X(ix).i, 
				                    q__2.i = q__3.r * X(ix).i + q__3.i * X(
				                    ix).r;
			                    q__1.r = temp.r - q__2.r, q__1.i = temp.i - 
				                    q__2.i;
			                    temp.r = q__1.r, temp.i = q__1.i;
			                    ix += *incx;
                /* L130: */
			                }
			                if (nounit) {
			                    r_cnjg(&q__2, &A(j,j));
			                    c_div(&q__1, &temp, &q__2);
			                    temp.r = q__1.r, temp.i = q__1.i;
			                }
		                    }
		                    i__2 = jx;
		                    X(jx).r = temp.r, X(jx).i = temp.i;
		                    jx += *incx;
                /* L140: */
		                }
	                    }
	                } else {
	                    if (*incx == 1) {
		                for (j = *n; j >= 1; --j) {
		                    i__1 = j;
		                    temp.r = X(j).r, temp.i = X(j).i;
		                    if (noconj) {
			                i__1 = j + 1;
			                for (i = *n; i >= j+1; --i) {
			                    i__2 = i + j * a_dim1;
			                    i__3 = i;
			                    q__2.r = A(i,j).r * X(i).r - A(i,j).i * X(
				                    i).i, q__2.i = A(i,j).r * X(i).i + 
				                    A(i,j).i * X(i).r;
			                    q__1.r = temp.r - q__2.r, q__1.i = temp.i - 
				                    q__2.i;
			                    temp.r = q__1.r, temp.i = q__1.i;
                /* L150: */
			                }
			                if (nounit) {
			                    c_div(&q__1, &temp, &A(j,j));
			                    temp.r = q__1.r, temp.i = q__1.i;
			                }
		                    } else {
			                i__1 = j + 1;
			                for (i = *n; i >= j+1; --i) {
			                    r_cnjg(&q__3, &A(i,j));
			                    i__2 = i;
			                    q__2.r = q__3.r * X(i).r - q__3.i * X(i).i, 
				                    q__2.i = q__3.r * X(i).i + q__3.i * X(
				                    i).r;
			                    q__1.r = temp.r - q__2.r, q__1.i = temp.i - 
				                    q__2.i;
			                    temp.r = q__1.r, temp.i = q__1.i;
                /* L160: */
			                }
			                if (nounit) {
			                    r_cnjg(&q__2, &A(j,j));
			                    c_div(&q__1, &temp, &q__2);
			                    temp.r = q__1.r, temp.i = q__1.i;
			                }
		                    }
		                    i__1 = j;
		                    X(j).r = temp.r, X(j).i = temp.i;
                /* L170: */
		                }
	                    } else {
		                kx += (*n - 1) * *incx;
		                jx = kx;
		                for (j = *n; j >= 1; --j) {
		                    ix = kx;
		                    i__1 = jx;
		                    temp.r = X(jx).r, temp.i = X(jx).i;
		                    if (noconj) {
			                i__1 = j + 1;
			                for (i = *n; i >= j+1; --i) {
			                    i__2 = i + j * a_dim1;
			                    i__3 = ix;
			                    q__2.r = A(i,j).r * X(ix).r - A(i,j).i * X(
				                    ix).i, q__2.i = A(i,j).r * X(ix).i + 
				                    A(i,j).i * X(ix).r;
			                    q__1.r = temp.r - q__2.r, q__1.i = temp.i - 
				                    q__2.i;
			                    temp.r = q__1.r, temp.i = q__1.i;
			                    ix -= *incx;
                /* L180: */
			                }
			                if (nounit) {
			                    c_div(&q__1, &temp, &A(j,j));
			                    temp.r = q__1.r, temp.i = q__1.i;
			                }
		                    } else {
			                i__1 = j + 1;
			                for (i = *n; i >= j+1; --i) {
			                    r_cnjg(&q__3, &A(i,j));
			                    i__2 = ix;
			                    q__2.r = q__3.r * X(ix).r - q__3.i * X(ix).i, 
				                    q__2.i = q__3.r * X(ix).i + q__3.i * X(
				                    ix).r;
			                    q__1.r = temp.r - q__2.r, q__1.i = temp.i - 
				                    q__2.i;
			                    temp.r = q__1.r, temp.i = q__1.i;
			                    ix -= *incx;
                /* L190: */
			                }
			                if (nounit) {
			                    r_cnjg(&q__2, &A(j,j));
			                    c_div(&q__1, &temp, &q__2);
			                    temp.r = q__1.r, temp.i = q__1.i;
			                }
		                    }
		                    i__1 = jx;
		                    X(jx).r = temp.r, X(jx).i = temp.i;
		                    jx -= *incx;
                /* L200: */
		                }
	                    }
	                }
                    }

                    return 0;

                /*     End of CTRSV . */

                } /* ctrsv_ */
        };
    };
};

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Architect Sea Surveillance AS
Norway Norway
Chief Architect - Sea Surveillance AS.

Specializing in integrated operations and high performance computing solutions.

I’ve been fooling around with computers since the early eighties, I’ve even done work on CP/M and MP/M.

Wrote my first “real” program on a BBC micro model B based on a series in a magazine at that time. It was fun and I got hooked on this thing called programming ...

A few Highlights:

  • High performance application server development
  • Model Driven Architecture and Code generators
  • Real-Time Distributed Solutions
  • C, C++, C#, Java, TSQL, PL/SQL, Delphi, ActionScript, Perl, Rexx
  • Microsoft SQL Server, Oracle RDBMS, IBM DB2, PostGreSQL
  • AMQP, Apache qpid, RabbitMQ, Microsoft Message Queuing, IBM WebSphereMQ, Oracle TuxidoMQ
  • Oracle WebLogic, IBM WebSphere
  • Corba, COM, DCE, WCF
  • AspenTech InfoPlus.21(IP21), OsiSoft PI


More information about what I do for a living can be found at: harlinn.com or LinkedIn

You can contact me at espen@harlinn.no

Comments and Discussions