Click here to Skip to main content
15,886,026 members
Articles / Web Development / HTML

Server Wizard

Rate me:
Please Sign up or sign in to vote.
4.83/5 (6 votes)
1 Feb 2013CPOL7 min read 31.1K   1.9K   33  
A Visual C++ Project Wizard for the fast creation of high performance TCP servers in C++
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
//  Based on original Protocol Buffers design by
//  Sanjay Ghemawat, Jeff Dean, and others.
//
// This file contains the CodedInputStream and CodedOutputStream classes,
// which wrap a ZeroCopyInputStream or ZeroCopyOutputStream, respectively,
// and allow you to read or write individual pieces of data in various
// formats.  In particular, these implement the varint encoding for
// integers, a simple variable-length encoding in which smaller numbers
// take fewer bytes.
//
// Typically these classes will only be used internally by the protocol
// buffer library in order to encode and decode protocol buffers.  Clients
// of the library only need to know about this class if they wish to write
// custom message parsing or serialization procedures.
//
// CodedOutputStream example:
//   // Write some data to "myfile".  First we write a 4-byte "magic number"
//   // to identify the file type, then write a length-delimited string.  The
//   // string is composed of a varint giving the length followed by the raw
//   // bytes.
//   int fd = open("myfile", O_WRONLY);
//   ZeroCopyOutputStream* raw_output = new FileOutputStream(fd);
//   CodedOutputStream* coded_output = new CodedOutputStream(raw_output);
//
//   int magic_number = 1234;
//   char text[] = "Hello world!";
//   coded_output->WriteLittleEndian32(magic_number);
//   coded_output->WriteVarint32(strlen(text));
//   coded_output->WriteRaw(text, strlen(text));
//
//   delete coded_output;
//   delete raw_output;
//   close(fd);
//
// CodedInputStream example:
//   // Read a file created by the above code.
//   int fd = open("myfile", O_RDONLY);
//   ZeroCopyInputStream* raw_input = new FileInputStream(fd);
//   CodedInputStream coded_input = new CodedInputStream(raw_input);
//
//   coded_input->ReadLittleEndian32(&magic_number);
//   if (magic_number != 1234) {
//     cerr << "File not in expected format." << endl;
//     return;
//   }
//
//   uint32 size;
//   coded_input->ReadVarint32(&size);
//
//   char* text = new char[size + 1];
//   coded_input->ReadRaw(buffer, size);
//   text[size] = '\0';
//
//   delete coded_input;
//   delete raw_input;
//   close(fd);
//
//   cout << "Text is: " << text << endl;
//   delete [] text;
//
// For those who are interested, varint encoding is defined as follows:
//
// The encoding operates on unsigned integers of up to 64 bits in length.
// Each byte of the encoded value has the format:
// * bits 0-6: Seven bits of the number being encoded.
// * bit 7: Zero if this is the last byte in the encoding (in which
//   case all remaining bits of the number are zero) or 1 if
//   more bytes follow.
// The first byte contains the least-significant 7 bits of the number, the
// second byte (if present) contains the next-least-significant 7 bits,
// and so on.  So, the binary number 1011000101011 would be encoded in two
// bytes as "10101011 00101100".
//
// In theory, varint could be used to encode integers of any length.
// However, for practicality we set a limit at 64 bits.  The maximum encoded
// length of a number is thus 10 bytes.

#ifndef GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
#define GOOGLE_PROTOBUF_IO_CODED_STREAM_H__

#include <string>
#ifdef _MSC_VER
  #if defined(_M_IX86) && \
      !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
    #define PROTOBUF_LITTLE_ENDIAN 1
  #endif
  #if _MSC_VER >= 1300
    // If MSVC has "/RTCc" set, it will complain about truncating casts at
    // runtime.  This file contains some intentional truncating casts.
    #pragma runtime_checks("c", off)
  #endif
#else
  #include <sys/param.h>   // __BYTE_ORDER
  #if defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN && \
      !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
    #define PROTOBUF_LITTLE_ENDIAN 1
  #endif
#endif
#include <google/protobuf/stubs/common.h>


namespace google {
namespace protobuf {

class DescriptorPool;
class MessageFactory;

namespace io {

// Defined in this file.
class CodedInputStream;
class CodedOutputStream;

// Defined in other files.
class ZeroCopyInputStream;           // zero_copy_stream.h
class ZeroCopyOutputStream;          // zero_copy_stream.h

// Class which reads and decodes binary data which is composed of varint-
// encoded integers and fixed-width pieces.  Wraps a ZeroCopyInputStream.
// Most users will not need to deal with CodedInputStream.
//
// Most methods of CodedInputStream that return a bool return false if an
// underlying I/O error occurs or if the data is malformed.  Once such a
// failure occurs, the CodedInputStream is broken and is no longer useful.
class LIBPROTOBUF_EXPORT CodedInputStream {
 public:
  // Create a CodedInputStream that reads from the given ZeroCopyInputStream.
  explicit CodedInputStream(ZeroCopyInputStream* input);

  // Create a CodedInputStream that reads from the given flat array.  This is
  // faster than using an ArrayInputStream.  PushLimit(size) is implied by
  // this constructor.
  explicit CodedInputStream(const uint8* buffer, int size);

  // Destroy the CodedInputStream and position the underlying
  // ZeroCopyInputStream at the first unread byte.  If an error occurred while
  // reading (causing a method to return false), then the exact position of
  // the input stream may be anywhere between the last value that was read
  // successfully and the stream's byte limit.
  ~CodedInputStream();

  // Return true if this CodedInputStream reads from a flat array instead of
  // a ZeroCopyInputStream.
  inline bool IsFlat() const;

  // Skips a number of bytes.  Returns false if an underlying read error
  // occurs.
  bool Skip(int count);

  // Sets *data to point directly at the unread part of the CodedInputStream's
  // underlying buffer, and *size to the size of that buffer, but does not
  // advance the stream's current position.  This will always either produce
  // a non-empty buffer or return false.  If the caller consumes any of
  // this data, it should then call Skip() to skip over the consumed bytes.
  // This may be useful for implementing external fast parsing routines for
  // types of data not covered by the CodedInputStream interface.
  bool GetDirectBufferPointer(const void** data, int* size);

  // Like GetDirectBufferPointer, but this method is inlined, and does not
  // attempt to Refresh() if the buffer is currently empty.
  inline void GetDirectBufferPointerInline(const void** data,
                                           int* size) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;

  // Read raw bytes, copying them into the given buffer.
  bool ReadRaw(void* buffer, int size);

  // Like ReadRaw, but reads into a string.
  //
  // Implementation Note:  ReadString() grows the string gradually as it
  // reads in the data, rather than allocating the entire requested size
  // upfront.  This prevents denial-of-service attacks in which a client
  // could claim that a string is going to be MAX_INT bytes long in order to
  // crash the server because it can't allocate this much space at once.
  bool ReadString(string* buffer, int size);
  // Like the above, with inlined optimizations. This should only be used
  // by the protobuf implementation.
  inline bool InternalReadStringInline(string* buffer,
                                       int size) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;


  // Read a 32-bit little-endian integer.
  bool ReadLittleEndian32(uint32* value);
  // Read a 64-bit little-endian integer.
  bool ReadLittleEndian64(uint64* value);

  // These methods read from an externally provided buffer. The caller is
  // responsible for ensuring that the buffer has sufficient space.
  // Read a 32-bit little-endian integer.
  static const uint8* ReadLittleEndian32FromArray(const uint8* buffer,
                                                   uint32* value);
  // Read a 64-bit little-endian integer.
  static const uint8* ReadLittleEndian64FromArray(const uint8* buffer,
                                                   uint64* value);

  // Read an unsigned integer with Varint encoding, truncating to 32 bits.
  // Reading a 32-bit value is equivalent to reading a 64-bit one and casting
  // it to uint32, but may be more efficient.
  bool ReadVarint32(uint32* value);
  // Read an unsigned integer with Varint encoding.
  bool ReadVarint64(uint64* value);

  // Read a tag.  This calls ReadVarint32() and returns the result, or returns
  // zero (which is not a valid tag) if ReadVarint32() fails.  Also, it updates
  // the last tag value, which can be checked with LastTagWas().
  // Always inline because this is only called in once place per parse loop
  // but it is called for every iteration of said loop, so it should be fast.
  // GCC doesn't want to inline this by default.
  uint32 ReadTag() GOOGLE_ATTRIBUTE_ALWAYS_INLINE;

  // Usually returns true if calling ReadVarint32() now would produce the given
  // value.  Will always return false if ReadVarint32() would not return the
  // given value.  If ExpectTag() returns true, it also advances past
  // the varint.  For best performance, use a compile-time constant as the
  // parameter.
  // Always inline because this collapses to a small number of instructions
  // when given a constant parameter, but GCC doesn't want to inline by default.
  bool ExpectTag(uint32 expected) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;

  // Like above, except this reads from the specified buffer. The caller is
  // responsible for ensuring that the buffer is large enough to read a varint
  // of the expected size. For best performance, use a compile-time constant as
  // the expected tag parameter.
  //
  // Returns a pointer beyond the expected tag if it was found, or NULL if it
  // was not.
  static const uint8* ExpectTagFromArray(
      const uint8* buffer,
      uint32 expected) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;

  // Usually returns true if no more bytes can be read.  Always returns false
  // if more bytes can be read.  If ExpectAtEnd() returns true, a subsequent
  // call to LastTagWas() will act as if ReadTag() had been called and returned
  // zero, and ConsumedEntireMessage() will return true.
  bool ExpectAtEnd();

  // If the last call to ReadTag() returned the given value, returns true.
  // Otherwise, returns false;
  //
  // This is needed because parsers for some types of embedded messages
  // (with field type TYPE_GROUP) don't actually know that they've reached the
  // end of a message until they see an ENDGROUP tag, which was actually part
  // of the enclosing message.  The enclosing message would like to check that
  // tag to make sure it had the right number, so it calls LastTagWas() on
  // return from the embedded parser to check.
  bool LastTagWas(uint32 expected);

  // When parsing message (but NOT a group), this method must be called
  // immediately after MergeFromCodedStream() returns (if it returns true)
  // to further verify that the message ended in a legitimate way.  For
  // example, this verifies that parsing did not end on an end-group tag.
  // It also checks for some cases where, due to optimizations,
  // MergeFromCodedStream() can incorrectly return true.
  bool ConsumedEntireMessage();

  // Limits ----------------------------------------------------------
  // Limits are used when parsing length-delimited embedded messages.
  // After the message's length is read, PushLimit() is used to prevent
  // the CodedInputStream from reading beyond that length.  Once the
  // embedded message has been parsed, PopLimit() is called to undo the
  // limit.

  // Opaque type used with PushLimit() and PopLimit().  Do not modify
  // values of this type yourself.  The only reason that this isn't a
  // struct with private internals is for efficiency.
  typedef int Limit;

  // Places a limit on the number of bytes that the stream may read,
  // starting from the current position.  Once the stream hits this limit,
  // it will act like the end of the input has been reached until PopLimit()
  // is called.
  //
  // As the names imply, the stream conceptually has a stack of limits.  The
  // shortest limit on the stack is always enforced, even if it is not the
  // top limit.
  //
  // The value returned by PushLimit() is opaque to the caller, and must
  // be passed unchanged to the corresponding call to PopLimit().
  Limit PushLimit(int byte_limit);

  // Pops the last limit pushed by PushLimit().  The input must be the value
  // returned by that call to PushLimit().
  void PopLimit(Limit limit);

  // Returns the number of bytes left until the nearest limit on the
  // stack is hit, or -1 if no limits are in place.
  int BytesUntilLimit() const;

  // Returns current position relative to the beginning of the input stream.
  int CurrentPosition() const;

  // Total Bytes Limit -----------------------------------------------
  // To prevent malicious users from sending excessively large messages
  // and causing integer overflows or memory exhaustion, CodedInputStream
  // imposes a hard limit on the total number of bytes it will read.

  // Sets the maximum number of bytes that this CodedInputStream will read
  // before refusing to continue.  To prevent integer overflows in the
  // protocol buffers implementation, as well as to prevent servers from
  // allocating enormous amounts of memory to hold parsed messages, the
  // maximum message length should be limited to the shortest length that
  // will not harm usability.  The theoretical shortest message that could
  // cause integer overflows is 512MB.  The default limit is 64MB.  Apps
  // should set shorter limits if possible.  If warning_threshold is not -1,
  // a warning will be printed to stderr after warning_threshold bytes are
  // read.  For backwards compatibility all negative values get squached to -1,
  // as other negative values might have special internal meanings.
  // An error will always be printed to stderr if the limit is reached.
  //
  // This is unrelated to PushLimit()/PopLimit().
  //
  // Hint:  If you are reading this because your program is printing a
  //   warning about dangerously large protocol messages, you may be
  //   confused about what to do next.  The best option is to change your
  //   design such that excessively large messages are not necessary.
  //   For example, try to design file formats to consist of many small
  //   messages rather than a single large one.  If this is infeasible,
  //   you will need to increase the limit.  Chances are, though, that
  //   your code never constructs a CodedInputStream on which the limit
  //   can be set.  You probably parse messages by calling things like
  //   Message::ParseFromString().  In this case, you will need to change
  //   your code to instead construct some sort of ZeroCopyInputStream
  //   (e.g. an ArrayInputStream), construct a CodedInputStream around
  //   that, then call Message::ParseFromCodedStream() instead.  Then
  //   you can adjust the limit.  Yes, it's more work, but you're doing
  //   something unusual.
  void SetTotalBytesLimit(int total_bytes_limit, int warning_threshold);

  // Recursion Limit -------------------------------------------------
  // To prevent corrupt or malicious messages from causing stack overflows,
  // we must keep track of the depth of recursion when parsing embedded
  // messages and groups.  CodedInputStream keeps track of this because it
  // is the only object that is passed down the stack during parsing.

  // Sets the maximum recursion depth.  The default is 100.
  void SetRecursionLimit(int limit);


  // Increments the current recursion depth.  Returns true if the depth is
  // under the limit, false if it has gone over.
  bool IncrementRecursionDepth();

  // Decrements the recursion depth.
  void DecrementRecursionDepth();

  // Extension Registry ----------------------------------------------
  // ADVANCED USAGE:  99.9% of people can ignore this section.
  //
  // By default, when parsing extensions, the parser looks for extension
  // definitions in the pool which owns the outer message's Descriptor.
  // However, you may call SetExtensionRegistry() to provide an alternative
  // pool instead.  This makes it possible, for example, to parse a message
  // using a generated class, but represent some extensions using
  // DynamicMessage.

  // Set the pool used to look up extensions.  Most users do not need to call
  // this as the correct pool will be chosen automatically.
  //
  // WARNING:  It is very easy to misuse this.  Carefully read the requirements
  //   below.  Do not use this unless you are sure you need it.  Almost no one
  //   does.
  //
  // Let's say you are parsing a message into message object m, and you want
  // to take advantage of SetExtensionRegistry().  You must follow these
  // requirements:
  //
  // The given DescriptorPool must contain m->GetDescriptor().  It is not
  // sufficient for it to simply contain a descriptor that has the same name
  // and content -- it must be the *exact object*.  In other words:
  //   assert(pool->FindMessageTypeByName(m->GetDescriptor()->full_name()) ==
  //          m->GetDescriptor());
  // There are two ways to satisfy this requirement:
  // 1) Use m->GetDescriptor()->pool() as the pool.  This is generally useless
  //    because this is the pool that would be used anyway if you didn't call
  //    SetExtensionRegistry() at all.
  // 2) Use a DescriptorPool which has m->GetDescriptor()->pool() as an
  //    "underlay".  Read the documentation for DescriptorPool for more
  //    information about underlays.
  //
  // You must also provide a MessageFactory.  This factory will be used to
  // construct Message objects representing extensions.  The factory's
  // GetPrototype() MUST return non-NULL for any Descriptor which can be found
  // through the provided pool.
  //
  // If the provided factory might return instances of protocol-compiler-
  // generated (i.e. compiled-in) types, or if the outer message object m is
  // a generated type, then the given factory MUST have this property:  If
  // GetPrototype() is given a Descriptor which resides in
  // DescriptorPool::generated_pool(), the factory MUST return the same
  // prototype which MessageFactory::generated_factory() would return.  That
  // is, given a descriptor for a generated type, the factory must return an
  // instance of the generated class (NOT DynamicMessage).  However, when
  // given a descriptor for a type that is NOT in generated_pool, the factory
  // is free to return any implementation.
  //
  // The reason for this requirement is that generated sub-objects may be
  // accessed via the standard (non-reflection) extension accessor methods,
  // and these methods will down-cast the object to the generated class type.
  // If the object is not actually of that type, the results would be undefined.
  // On the other hand, if an extension is not compiled in, then there is no
  // way the code could end up accessing it via the standard accessors -- the
  // only way to access the extension is via reflection.  When using reflection,
  // DynamicMessage and generated messages are indistinguishable, so it's fine
  // if these objects are represented using DynamicMessage.
  //
  // Using DynamicMessageFactory on which you have called
  // SetDelegateToGeneratedFactory(true) should be sufficient to satisfy the
  // above requirement.
  //
  // If either pool or factory is NULL, both must be NULL.
  //
  // Note that this feature is ignored when parsing "lite" messages as they do
  // not have descriptors.
  void SetExtensionRegistry(const DescriptorPool* pool,
                            MessageFactory* factory);

  // Get the DescriptorPool set via SetExtensionRegistry(), or NULL if no pool
  // has been provided.
  const DescriptorPool* GetExtensionPool();

  // Get the MessageFactory set via SetExtensionRegistry(), or NULL if no
  // factory has been provided.
  MessageFactory* GetExtensionFactory();

 private:
  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedInputStream);

  ZeroCopyInputStream* input_;
  const uint8* buffer_;
  const uint8* buffer_end_;     // pointer to the end of the buffer.
  int total_bytes_read_;  // total bytes read from input_, including
                          // the current buffer

  // If total_bytes_read_ surpasses INT_MAX, we record the extra bytes here
  // so that we can BackUp() on destruction.
  int overflow_bytes_;

  // LastTagWas() stuff.
  uint32 last_tag_;         // result of last ReadTag().

  // This is set true by ReadTag{Fallback/Slow}() if it is called when exactly
  // at EOF, or by ExpectAtEnd() when it returns true.  This happens when we
  // reach the end of a message and attempt to read another tag.
  bool legitimate_message_end_;

  // See EnableAliasing().
  bool aliasing_enabled_;

  // Limits
  Limit current_limit_;   // if position = -1, no limit is applied

  // For simplicity, if the current buffer crosses a limit (either a normal
  // limit created by PushLimit() or the total bytes limit), buffer_size_
  // only tracks the number of bytes before that limit.  This field
  // contains the number of bytes after it.  Note that this implies that if
  // buffer_size_ == 0 and buffer_size_after_limit_ > 0, we know we've
  // hit a limit.  However, if both are zero, it doesn't necessarily mean
  // we aren't at a limit -- the buffer may have ended exactly at the limit.
  int buffer_size_after_limit_;

  // Maximum number of bytes to read, period.  This is unrelated to
  // current_limit_.  Set using SetTotalBytesLimit().
  int total_bytes_limit_;

  // If positive/0: Limit for bytes read after which a warning due to size
  // should be logged.
  // If -1: Printing of warning disabled. Can be set by client.
  // If -2: Internal: Limit has been reached, print full size when destructing.
  int total_bytes_warning_threshold_;

  // Current recursion depth, controlled by IncrementRecursionDepth() and
  // DecrementRecursionDepth().
  int recursion_depth_;
  // Recursion depth limit, set by SetRecursionLimit().
  int recursion_limit_;

  // See SetExtensionRegistry().
  const DescriptorPool* extension_pool_;
  MessageFactory* extension_factory_;

  // Private member functions.

  // Advance the buffer by a given number of bytes.
  void Advance(int amount);

  // Back up input_ to the current buffer position.
  void BackUpInputToCurrentPosition();

  // Recomputes the value of buffer_size_after_limit_.  Must be called after
  // current_limit_ or total_bytes_limit_ changes.
  void RecomputeBufferLimits();

  // Writes an error message saying that we hit total_bytes_limit_.
  void PrintTotalBytesLimitError();

  // Called when the buffer runs out to request more data.  Implies an
  // Advance(BufferSize()).
  bool Refresh();

  // When parsing varints, we optimize for the common case of small values, and
  // then optimize for the case when the varint fits within the current buffer
  // piece. The Fallback method is used when we can't use the one-byte
  // optimization. The Slow method is yet another fallback when the buffer is
  // not large enough. Making the slow path out-of-line speeds up the common
  // case by 10-15%. The slow path is fairly uncommon: it only triggers when a
  // message crosses multiple buffers.
  bool ReadVarint32Fallback(uint32* value);
  bool ReadVarint64Fallback(uint64* value);
  bool ReadVarint32Slow(uint32* value);
  bool ReadVarint64Slow(uint64* value);
  bool ReadLittleEndian32Fallback(uint32* value);
  bool ReadLittleEndian64Fallback(uint64* value);
  // Fallback/slow methods for reading tags. These do not update last_tag_,
  // but will set legitimate_message_end_ if we are at the end of the input
  // stream.
  uint32 ReadTagFallback();
  uint32 ReadTagSlow();
  bool ReadStringFallback(string* buffer, int size);

  // Return the size of the buffer.
  int BufferSize() const;

  static const int kDefaultTotalBytesLimit = 64 << 20;  // 64MB

  static const int kDefaultTotalBytesWarningThreshold = 32 << 20;  // 32MB

  static int default_recursion_limit_;  // 100 by default.
};

// Class which encodes and writes binary data which is composed of varint-
// encoded integers and fixed-width pieces.  Wraps a ZeroCopyOutputStream.
// Most users will not need to deal with CodedOutputStream.
//
// Most methods of CodedOutputStream which return a bool return false if an
// underlying I/O error occurs.  Once such a failure occurs, the
// CodedOutputStream is broken and is no longer useful. The Write* methods do
// not return the stream status, but will invalidate the stream if an error
// occurs. The client can probe HadError() to determine the status.
//
// Note that every method of CodedOutputStream which writes some data has
// a corresponding static "ToArray" version. These versions write directly
// to the provided buffer, returning a pointer past the last written byte.
// They require that the buffer has sufficient capacity for the encoded data.
// This allows an optimization where we check if an output stream has enough
// space for an entire message before we start writing and, if there is, we
// call only the ToArray methods to avoid doing bound checks for each
// individual value.
// i.e., in the example above:
//
//   CodedOutputStream coded_output = new CodedOutputStream(raw_output);
//   int magic_number = 1234;
//   char text[] = "Hello world!";
//
//   int coded_size = sizeof(magic_number) +
//                    CodedOutputStream::VarintSize32(strlen(text)) +
//                    strlen(text);
//
//   uint8* buffer =
//       coded_output->GetDirectBufferForNBytesAndAdvance(coded_size);
//   if (buffer != NULL) {
//     // The output stream has enough space in the buffer: write directly to
//     // the array.
//     buffer = CodedOutputStream::WriteLittleEndian32ToArray(magic_number,
//                                                            buffer);
//     buffer = CodedOutputStream::WriteVarint32ToArray(strlen(text), buffer);
//     buffer = CodedOutputStream::WriteRawToArray(text, strlen(text), buffer);
//   } else {
//     // Make bound-checked writes, which will ask the underlying stream for
//     // more space as needed.
//     coded_output->WriteLittleEndian32(magic_number);
//     coded_output->WriteVarint32(strlen(text));
//     coded_output->WriteRaw(text, strlen(text));
//   }
//
//   delete coded_output;
class LIBPROTOBUF_EXPORT CodedOutputStream {
 public:
  // Create an CodedOutputStream that writes to the given ZeroCopyOutputStream.
  explicit CodedOutputStream(ZeroCopyOutputStream* output);

  // Destroy the CodedOutputStream and position the underlying
  // ZeroCopyOutputStream immediately after the last byte written.
  ~CodedOutputStream();

  // Skips a number of bytes, leaving the bytes unmodified in the underlying
  // buffer.  Returns false if an underlying write error occurs.  This is
  // mainly useful with GetDirectBufferPointer().
  bool Skip(int count);

  // Sets *data to point directly at the unwritten part of the
  // CodedOutputStream's underlying buffer, and *size to the size of that
  // buffer, but does not advance the stream's current position.  This will
  // always either produce a non-empty buffer or return false.  If the caller
  // writes any data to this buffer, it should then call Skip() to skip over
  // the consumed bytes.  This may be useful for implementing external fast
  // serialization routines for types of data not covered by the
  // CodedOutputStream interface.
  bool GetDirectBufferPointer(void** data, int* size);

  // If there are at least "size" bytes available in the current buffer,
  // returns a pointer directly into the buffer and advances over these bytes.
  // The caller may then write directly into this buffer (e.g. using the
  // *ToArray static methods) rather than go through CodedOutputStream.  If
  // there are not enough bytes available, returns NULL.  The return pointer is
  // invalidated as soon as any other non-const method of CodedOutputStream
  // is called.
  inline uint8* GetDirectBufferForNBytesAndAdvance(int size);

  // Write raw bytes, copying them from the given buffer.
  void WriteRaw(const void* buffer, int size);
  // Like WriteRaw()  but writing directly to the target array.
  // This is _not_ inlined, as the compiler often optimizes memcpy into inline
  // copy loops. Since this gets called by every field with string or bytes
  // type, inlining may lead to a significant amount of code bloat, with only a
  // minor performance gain.
  static uint8* WriteRawToArray(const void* buffer, int size, uint8* target);

  // Equivalent to WriteRaw(str.data(), str.size()).
  void WriteString(const string& str);
  // Like WriteString()  but writing directly to the target array.
  static uint8* WriteStringToArray(const string& str, uint8* target);


  // Write a 32-bit little-endian integer.
  void WriteLittleEndian32(uint32 value);
  // Like WriteLittleEndian32()  but writing directly to the target array.
  static uint8* WriteLittleEndian32ToArray(uint32 value, uint8* target);
  // Write a 64-bit little-endian integer.
  void WriteLittleEndian64(uint64 value);
  // Like WriteLittleEndian64()  but writing directly to the target array.
  static uint8* WriteLittleEndian64ToArray(uint64 value, uint8* target);

  // Write an unsigned integer with Varint encoding.  Writing a 32-bit value
  // is equivalent to casting it to uint64 and writing it as a 64-bit value,
  // but may be more efficient.
  void WriteVarint32(uint32 value);
  // Like WriteVarint32()  but writing directly to the target array.
  static uint8* WriteVarint32ToArray(uint32 value, uint8* target);
  // Write an unsigned integer with Varint encoding.
  void WriteVarint64(uint64 value);
  // Like WriteVarint64()  but writing directly to the target array.
  static uint8* WriteVarint64ToArray(uint64 value, uint8* target);

  // Equivalent to WriteVarint32() except when the value is negative,
  // in which case it must be sign-extended to a full 10 bytes.
  void WriteVarint32SignExtended(int32 value);
  // Like WriteVarint32SignExtended()  but writing directly to the target array.
  static uint8* WriteVarint32SignExtendedToArray(int32 value, uint8* target);

  // This is identical to WriteVarint32(), but optimized for writing tags.
  // In particular, if the input is a compile-time constant, this method
  // compiles down to a couple instructions.
  // Always inline because otherwise the aformentioned optimization can't work,
  // but GCC by default doesn't want to inline this.
  void WriteTag(uint32 value);
  // Like WriteTag()  but writing directly to the target array.
  static uint8* WriteTagToArray(
      uint32 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;

  // Returns the number of bytes needed to encode the given value as a varint.
  static int VarintSize32(uint32 value);
  // Returns the number of bytes needed to encode the given value as a varint.
  static int VarintSize64(uint64 value);

  // If negative, 10 bytes.  Otheriwse, same as VarintSize32().
  static int VarintSize32SignExtended(int32 value);

  // Compile-time equivalent of VarintSize32().
  template <uint32 Value>
  struct StaticVarintSize32 {
    static const int value =
        (Value < (1 << 7))
            ? 1
            : (Value < (1 << 14))
                ? 2
                : (Value < (1 << 21))
                    ? 3
                    : (Value < (1 << 28))
                        ? 4
                        : 5;
  };

  // Returns the total number of bytes written since this object was created.
  inline int ByteCount() const;

  // Returns true if there was an underlying I/O error since this object was
  // created.
  bool HadError() const { return had_error_; }

 private:
  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedOutputStream);

  ZeroCopyOutputStream* output_;
  uint8* buffer_;
  int buffer_size_;
  int total_bytes_;  // Sum of sizes of all buffers seen so far.
  bool had_error_;   // Whether an error occurred during output.

  // Advance the buffer by a given number of bytes.
  void Advance(int amount);

  // Called when the buffer runs out to request more data.  Implies an
  // Advance(buffer_size_).
  bool Refresh();

  static uint8* WriteVarint32FallbackToArray(uint32 value, uint8* target);

  // Always-inlined versions of WriteVarint* functions so that code can be
  // reused, while still controlling size. For instance, WriteVarint32ToArray()
  // should not directly call this: since it is inlined itself, doing so
  // would greatly increase the size of generated code. Instead, it should call
  // WriteVarint32FallbackToArray.  Meanwhile, WriteVarint32() is already
  // out-of-line, so it should just invoke this directly to avoid any extra
  // function call overhead.
  static uint8* WriteVarint32FallbackToArrayInline(
      uint32 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;
  static uint8* WriteVarint64ToArrayInline(
      uint64 value, uint8* target) GOOGLE_ATTRIBUTE_ALWAYS_INLINE;

  static int VarintSize32Fallback(uint32 value);
};

// inline methods ====================================================
// The vast majority of varints are only one byte.  These inline
// methods optimize for that case.

inline bool CodedInputStream::ReadVarint32(uint32* value) {
  if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
    *value = *buffer_;
    Advance(1);
    return true;
  } else {
    return ReadVarint32Fallback(value);
  }
}

inline bool CodedInputStream::ReadVarint64(uint64* value) {
  if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
    *value = *buffer_;
    Advance(1);
    return true;
  } else {
    return ReadVarint64Fallback(value);
  }
}

// static
inline const uint8* CodedInputStream::ReadLittleEndian32FromArray(
    const uint8* buffer,
    uint32* value) {
#if defined(PROTOBUF_LITTLE_ENDIAN)
  memcpy(value, buffer, sizeof(*value));
  return buffer + sizeof(*value);
#else
  *value = (static_cast<uint32>(buffer[0])      ) |
           (static_cast<uint32>(buffer[1]) <<  8) |
           (static_cast<uint32>(buffer[2]) << 16) |
           (static_cast<uint32>(buffer[3]) << 24);
  return buffer + sizeof(*value);
#endif
}
// static
inline const uint8* CodedInputStream::ReadLittleEndian64FromArray(
    const uint8* buffer,
    uint64* value) {
#if defined(PROTOBUF_LITTLE_ENDIAN)
  memcpy(value, buffer, sizeof(*value));
  return buffer + sizeof(*value);
#else
  uint32 part0 = (static_cast<uint32>(buffer[0])      ) |
                 (static_cast<uint32>(buffer[1]) <<  8) |
                 (static_cast<uint32>(buffer[2]) << 16) |
                 (static_cast<uint32>(buffer[3]) << 24);
  uint32 part1 = (static_cast<uint32>(buffer[4])      ) |
                 (static_cast<uint32>(buffer[5]) <<  8) |
                 (static_cast<uint32>(buffer[6]) << 16) |
                 (static_cast<uint32>(buffer[7]) << 24);
  *value = static_cast<uint64>(part0) |
          (static_cast<uint64>(part1) << 32);
  return buffer + sizeof(*value);
#endif
}

inline bool CodedInputStream::ReadLittleEndian32(uint32* value) {
#if defined(PROTOBUF_LITTLE_ENDIAN)
  if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
    memcpy(value, buffer_, sizeof(*value));
    Advance(sizeof(*value));
    return true;
  } else {
    return ReadLittleEndian32Fallback(value);
  }
#else
  return ReadLittleEndian32Fallback(value);
#endif
}

inline bool CodedInputStream::ReadLittleEndian64(uint64* value) {
#if defined(PROTOBUF_LITTLE_ENDIAN)
  if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
    memcpy(value, buffer_, sizeof(*value));
    Advance(sizeof(*value));
    return true;
  } else {
    return ReadLittleEndian64Fallback(value);
  }
#else
  return ReadLittleEndian64Fallback(value);
#endif
}

inline uint32 CodedInputStream::ReadTag() {
  if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] < 0x80) {
    last_tag_ = buffer_[0];
    Advance(1);
    return last_tag_;
  } else {
    last_tag_ = ReadTagFallback();
    return last_tag_;
  }
}

inline bool CodedInputStream::LastTagWas(uint32 expected) {
  return last_tag_ == expected;
}

inline bool CodedInputStream::ConsumedEntireMessage() {
  return legitimate_message_end_;
}

inline bool CodedInputStream::ExpectTag(uint32 expected) {
  if (expected < (1 << 7)) {
    if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] == expected) {
      Advance(1);
      return true;
    } else {
      return false;
    }
  } else if (expected < (1 << 14)) {
    if (GOOGLE_PREDICT_TRUE(BufferSize() >= 2) &&
        buffer_[0] == static_cast<uint8>(expected | 0x80) &&
        buffer_[1] == static_cast<uint8>(expected >> 7)) {
      Advance(2);
      return true;
    } else {
      return false;
    }
  } else {
    // Don't bother optimizing for larger values.
    return false;
  }
}

inline const uint8* CodedInputStream::ExpectTagFromArray(
    const uint8* buffer, uint32 expected) {
  if (expected < (1 << 7)) {
    if (buffer[0] == expected) {
      return buffer + 1;
    }
  } else if (expected < (1 << 14)) {
    if (buffer[0] == static_cast<uint8>(expected | 0x80) &&
        buffer[1] == static_cast<uint8>(expected >> 7)) {
      return buffer + 2;
    }
  }
  return NULL;
}

inline void CodedInputStream::GetDirectBufferPointerInline(const void** data,
                                                           int* size) {
  *data = buffer_;
  *size = buffer_end_ - buffer_;
}

inline bool CodedInputStream::ExpectAtEnd() {
  // If we are at a limit we know no more bytes can be read.  Otherwise, it's
  // hard to say without calling Refresh(), and we'd rather not do that.

  if (buffer_ == buffer_end_ &&
      ((buffer_size_after_limit_ != 0) ||
       (total_bytes_read_ == current_limit_))) {
    last_tag_ = 0;                   // Pretend we called ReadTag()...
    legitimate_message_end_ = true;  // ... and it hit EOF.
    return true;
  } else {
    return false;
  }
}

inline int CodedInputStream::CurrentPosition() const {
  return total_bytes_read_ - (BufferSize() + buffer_size_after_limit_);
}

inline uint8* CodedOutputStream::GetDirectBufferForNBytesAndAdvance(int size) {
  if (buffer_size_ < size) {
    return NULL;
  } else {
    uint8* result = buffer_;
    Advance(size);
    return result;
  }
}

inline uint8* CodedOutputStream::WriteVarint32ToArray(uint32 value,
                                                        uint8* target) {
  if (value < 0x80) {
    *target = value;
    return target + 1;
  } else {
    return WriteVarint32FallbackToArray(value, target);
  }
}

inline void CodedOutputStream::WriteVarint32SignExtended(int32 value) {
  if (value < 0) {
    WriteVarint64(static_cast<uint64>(value));
  } else {
    WriteVarint32(static_cast<uint32>(value));
  }
}

inline uint8* CodedOutputStream::WriteVarint32SignExtendedToArray(
    int32 value, uint8* target) {
  if (value < 0) {
    return WriteVarint64ToArray(static_cast<uint64>(value), target);
  } else {
    return WriteVarint32ToArray(static_cast<uint32>(value), target);
  }
}

inline uint8* CodedOutputStream::WriteLittleEndian32ToArray(uint32 value,
                                                            uint8* target) {
#if defined(PROTOBUF_LITTLE_ENDIAN)
  memcpy(target, &value, sizeof(value));
#else
  target[0] = static_cast<uint8>(value);
  target[1] = static_cast<uint8>(value >>  8);
  target[2] = static_cast<uint8>(value >> 16);
  target[3] = static_cast<uint8>(value >> 24);
#endif
  return target + sizeof(value);
}

inline uint8* CodedOutputStream::WriteLittleEndian64ToArray(uint64 value,
                                                            uint8* target) {
#if defined(PROTOBUF_LITTLE_ENDIAN)
  memcpy(target, &value, sizeof(value));
#else
  uint32 part0 = static_cast<uint32>(value);
  uint32 part1 = static_cast<uint32>(value >> 32);

  target[0] = static_cast<uint8>(part0);
  target[1] = static_cast<uint8>(part0 >>  8);
  target[2] = static_cast<uint8>(part0 >> 16);
  target[3] = static_cast<uint8>(part0 >> 24);
  target[4] = static_cast<uint8>(part1);
  target[5] = static_cast<uint8>(part1 >>  8);
  target[6] = static_cast<uint8>(part1 >> 16);
  target[7] = static_cast<uint8>(part1 >> 24);
#endif
  return target + sizeof(value);
}

inline void CodedOutputStream::WriteTag(uint32 value) {
  WriteVarint32(value);
}

inline uint8* CodedOutputStream::WriteTagToArray(
    uint32 value, uint8* target) {
  if (value < (1 << 7)) {
    target[0] = value;
    return target + 1;
  } else if (value < (1 << 14)) {
    target[0] = static_cast<uint8>(value | 0x80);
    target[1] = static_cast<uint8>(value >> 7);
    return target + 2;
  } else {
    return WriteVarint32FallbackToArray(value, target);
  }
}

inline int CodedOutputStream::VarintSize32(uint32 value) {
  if (value < (1 << 7)) {
    return 1;
  } else  {
    return VarintSize32Fallback(value);
  }
}

inline int CodedOutputStream::VarintSize32SignExtended(int32 value) {
  if (value < 0) {
    return 10;     // TODO(kenton):  Make this a symbolic constant.
  } else {
    return VarintSize32(static_cast<uint32>(value));
  }
}

inline void CodedOutputStream::WriteString(const string& str) {
  WriteRaw(str.data(), static_cast<int>(str.size()));
}

inline uint8* CodedOutputStream::WriteStringToArray(
    const string& str, uint8* target) {
  return WriteRawToArray(str.data(), static_cast<int>(str.size()), target);
}

inline int CodedOutputStream::ByteCount() const {
  return total_bytes_ - buffer_size_;
}

inline void CodedInputStream::Advance(int amount) {
  buffer_ += amount;
}

inline void CodedOutputStream::Advance(int amount) {
  buffer_ += amount;
  buffer_size_ -= amount;
}

inline void CodedInputStream::SetRecursionLimit(int limit) {
  recursion_limit_ = limit;
}

inline bool CodedInputStream::IncrementRecursionDepth() {
  ++recursion_depth_;
  return recursion_depth_ <= recursion_limit_;
}

inline void CodedInputStream::DecrementRecursionDepth() {
  if (recursion_depth_ > 0) --recursion_depth_;
}

inline void CodedInputStream::SetExtensionRegistry(const DescriptorPool* pool,
                                                   MessageFactory* factory) {
  extension_pool_ = pool;
  extension_factory_ = factory;
}

inline const DescriptorPool* CodedInputStream::GetExtensionPool() {
  return extension_pool_;
}

inline MessageFactory* CodedInputStream::GetExtensionFactory() {
  return extension_factory_;
}

inline int CodedInputStream::BufferSize() const {
  return buffer_end_ - buffer_;
}

inline CodedInputStream::CodedInputStream(ZeroCopyInputStream* input)
  : input_(input),
    buffer_(NULL),
    buffer_end_(NULL),
    total_bytes_read_(0),
    overflow_bytes_(0),
    last_tag_(0),
    legitimate_message_end_(false),
    aliasing_enabled_(false),
    current_limit_(kint32max),
    buffer_size_after_limit_(0),
    total_bytes_limit_(kDefaultTotalBytesLimit),
    total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
    recursion_depth_(0),
    recursion_limit_(default_recursion_limit_),
    extension_pool_(NULL),
    extension_factory_(NULL) {
  // Eagerly Refresh() so buffer space is immediately available.
  Refresh();
}

inline CodedInputStream::CodedInputStream(const uint8* buffer, int size)
  : input_(NULL),
    buffer_(buffer),
    buffer_end_(buffer + size),
    total_bytes_read_(size),
    overflow_bytes_(0),
    last_tag_(0),
    legitimate_message_end_(false),
    aliasing_enabled_(false),
    current_limit_(size),
    buffer_size_after_limit_(0),
    total_bytes_limit_(kDefaultTotalBytesLimit),
    total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
    recursion_depth_(0),
    recursion_limit_(default_recursion_limit_),
    extension_pool_(NULL),
    extension_factory_(NULL) {
  // Note that setting current_limit_ == size is important to prevent some
  // code paths from trying to access input_ and segfaulting.
}

inline bool CodedInputStream::IsFlat() const {
  return input_ == NULL;
}

}  // namespace io
}  // namespace protobuf


#if defined(_MSC_VER) && _MSC_VER >= 1300
  #pragma runtime_checks("c", restore)
#endif  // _MSC_VER

}  // namespace google
#endif  // GOOGLE_PROTOBUF_IO_CODED_STREAM_H__

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Technical Lead
Tunisia Tunisia
Services:
http://www.pushframework.com/?page_id=890

Comments and Discussions