Click here to Skip to main content
15,886,067 members
Articles / Programming Languages / C++

Capturing Video from Web-camera on Windows 7 and 8 by using Media Foundation

Rate me:
Please Sign up or sign in to vote.
4.96/5 (25 votes)
10 Apr 2013CPOL5 min read 280.3K   33.1K   71  
Simple lib for capturing video from web-camera by using Media Foundation
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

#ifndef OPENCV_FLANN_KDTREE_INDEX_H_
#define OPENCV_FLANN_KDTREE_INDEX_H_

#include <algorithm>
#include <map>
#include <cassert>
#include <cstring>

#include "general.h"
#include "nn_index.h"
#include "dynamic_bitset.h"
#include "matrix.h"
#include "result_set.h"
#include "heap.h"
#include "allocator.h"
#include "random.h"
#include "saving.h"


namespace cvflann
{

struct KDTreeIndexParams : public IndexParams
{
    KDTreeIndexParams(int trees = 4)
    {
        (*this)["algorithm"] = FLANN_INDEX_KDTREE;
        (*this)["trees"] = trees;
    }
};


/**
 * Randomized kd-tree index
 *
 * Contains the k-d trees and other information for indexing a set of points
 * for nearest-neighbor matching.
 */
template <typename Distance>
class KDTreeIndex : public NNIndex<Distance>
{
public:
    typedef typename Distance::ElementType ElementType;
    typedef typename Distance::ResultType DistanceType;


    /**
     * KDTree constructor
     *
     * Params:
     *          inputData = dataset with the input features
     *          params = parameters passed to the kdtree algorithm
     */
    KDTreeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeIndexParams(),
                Distance d = Distance() ) :
        dataset_(inputData), index_params_(params), distance_(d)
    {
        size_ = dataset_.rows;
        veclen_ = dataset_.cols;

        trees_ = get_param(index_params_,"trees",4);
        tree_roots_ = new NodePtr[trees_];

        // Create a permutable array of indices to the input vectors.
        vind_.resize(size_);
        for (size_t i = 0; i < size_; ++i) {
            vind_[i] = int(i);
        }

        mean_ = new DistanceType[veclen_];
        var_ = new DistanceType[veclen_];
    }


    KDTreeIndex(const KDTreeIndex&);
    KDTreeIndex& operator=(const KDTreeIndex&);

    /**
     * Standard destructor
     */
    ~KDTreeIndex()
    {
        if (tree_roots_!=NULL) {
            delete[] tree_roots_;
        }
        delete[] mean_;
        delete[] var_;
    }

    /**
     * Builds the index
     */
    void buildIndex()
    {
        /* Construct the randomized trees. */
        for (int i = 0; i < trees_; i++) {
            /* Randomize the order of vectors to allow for unbiased sampling. */
            std::random_shuffle(vind_.begin(), vind_.end());
            tree_roots_[i] = divideTree(&vind_[0], int(size_) );
        }
    }


    flann_algorithm_t getType() const
    {
        return FLANN_INDEX_KDTREE;
    }


    void saveIndex(FILE* stream)
    {
        save_value(stream, trees_);
        for (int i=0; i<trees_; ++i) {
            save_tree(stream, tree_roots_[i]);
        }
    }



    void loadIndex(FILE* stream)
    {
        load_value(stream, trees_);
        if (tree_roots_!=NULL) {
            delete[] tree_roots_;
        }
        tree_roots_ = new NodePtr[trees_];
        for (int i=0; i<trees_; ++i) {
            load_tree(stream,tree_roots_[i]);
        }

        index_params_["algorithm"] = getType();
        index_params_["trees"] = tree_roots_;
    }

    /**
     *  Returns size of index.
     */
    size_t size() const
    {
        return size_;
    }

    /**
     * Returns the length of an index feature.
     */
    size_t veclen() const
    {
        return veclen_;
    }

    /**
     * Computes the inde memory usage
     * Returns: memory used by the index
     */
    int usedMemory() const
    {
        return int(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int));  // pool memory and vind array memory
    }

    /**
     * Find set of nearest neighbors to vec. Their indices are stored inside
     * the result object.
     *
     * Params:
     *     result = the result object in which the indices of the nearest-neighbors are stored
     *     vec = the vector for which to search the nearest neighbors
     *     maxCheck = the maximum number of restarts (in a best-bin-first manner)
     */
    void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
    {
        int maxChecks = get_param(searchParams,"checks", 32);
        float epsError = 1+get_param(searchParams,"eps",0.0f);

        if (maxChecks==FLANN_CHECKS_UNLIMITED) {
            getExactNeighbors(result, vec, epsError);
        }
        else {
            getNeighbors(result, vec, maxChecks, epsError);
        }
    }

    IndexParams getParameters() const
    {
        return index_params_;
    }

private:


    /*--------------------- Internal Data Structures --------------------------*/
    struct Node
    {
        /**
         * Dimension used for subdivision.
         */
        int divfeat;
        /**
         * The values used for subdivision.
         */
        DistanceType divval;
        /**
         * The child nodes.
         */
        Node* child1, * child2;
    };
    typedef Node* NodePtr;
    typedef BranchStruct<NodePtr, DistanceType> BranchSt;
    typedef BranchSt* Branch;



    void save_tree(FILE* stream, NodePtr tree)
    {
        save_value(stream, *tree);
        if (tree->child1!=NULL) {
            save_tree(stream, tree->child1);
        }
        if (tree->child2!=NULL) {
            save_tree(stream, tree->child2);
        }
    }


    void load_tree(FILE* stream, NodePtr& tree)
    {
        tree = pool_.allocate<Node>();
        load_value(stream, *tree);
        if (tree->child1!=NULL) {
            load_tree(stream, tree->child1);
        }
        if (tree->child2!=NULL) {
            load_tree(stream, tree->child2);
        }
    }


    /**
     * Create a tree node that subdivides the list of vecs from vind[first]
     * to vind[last].  The routine is called recursively on each sublist.
     * Place a pointer to this new tree node in the location pTree.
     *
     * Params: pTree = the new node to create
     *                  first = index of the first vector
     *                  last = index of the last vector
     */
    NodePtr divideTree(int* ind, int count)
    {
        NodePtr node = pool_.allocate<Node>(); // allocate memory

        /* If too few exemplars remain, then make this a leaf node. */
        if ( count == 1) {
            node->child1 = node->child2 = NULL;    /* Mark as leaf node. */
            node->divfeat = *ind;    /* Store index of this vec. */
        }
        else {
            int idx;
            int cutfeat;
            DistanceType cutval;
            meanSplit(ind, count, idx, cutfeat, cutval);

            node->divfeat = cutfeat;
            node->divval = cutval;
            node->child1 = divideTree(ind, idx);
            node->child2 = divideTree(ind+idx, count-idx);
        }

        return node;
    }


    /**
     * Choose which feature to use in order to subdivide this set of vectors.
     * Make a random choice among those with the highest variance, and use
     * its variance as the threshold value.
     */
    void meanSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval)
    {
        memset(mean_,0,veclen_*sizeof(DistanceType));
        memset(var_,0,veclen_*sizeof(DistanceType));

        /* Compute mean values.  Only the first SAMPLE_MEAN values need to be
            sampled to get a good estimate.
         */
        int cnt = std::min((int)SAMPLE_MEAN+1, count);
        for (int j = 0; j < cnt; ++j) {
            ElementType* v = dataset_[ind[j]];
            for (size_t k=0; k<veclen_; ++k) {
                mean_[k] += v[k];
            }
        }
        for (size_t k=0; k<veclen_; ++k) {
            mean_[k] /= cnt;
        }

        /* Compute variances (no need to divide by count). */
        for (int j = 0; j < cnt; ++j) {
            ElementType* v = dataset_[ind[j]];
            for (size_t k=0; k<veclen_; ++k) {
                DistanceType dist = v[k] - mean_[k];
                var_[k] += dist * dist;
            }
        }
        /* Select one of the highest variance indices at random. */
        cutfeat = selectDivision(var_);
        cutval = mean_[cutfeat];

        int lim1, lim2;
        planeSplit(ind, count, cutfeat, cutval, lim1, lim2);

        if (lim1>count/2) index = lim1;
        else if (lim2<count/2) index = lim2;
        else index = count/2;

        /* If either list is empty, it means that all remaining features
         * are identical. Split in the middle to maintain a balanced tree.
         */
        if ((lim1==count)||(lim2==0)) index = count/2;
    }


    /**
     * Select the top RAND_DIM largest values from v and return the index of
     * one of these selected at random.
     */
    int selectDivision(DistanceType* v)
    {
        int num = 0;
        size_t topind[RAND_DIM];

        /* Create a list of the indices of the top RAND_DIM values. */
        for (size_t i = 0; i < veclen_; ++i) {
            if ((num < RAND_DIM)||(v[i] > v[topind[num-1]])) {
                /* Put this element at end of topind. */
                if (num < RAND_DIM) {
                    topind[num++] = i;            /* Add to list. */
                }
                else {
                    topind[num-1] = i;         /* Replace last element. */
                }
                /* Bubble end value down to right location by repeated swapping. */
                int j = num - 1;
                while (j > 0  &&  v[topind[j]] > v[topind[j-1]]) {
                    std::swap(topind[j], topind[j-1]);
                    --j;
                }
            }
        }
        /* Select a random integer in range [0,num-1], and return that index. */
        int rnd = rand_int(num);
        return (int)topind[rnd];
    }


    /**
     *  Subdivide the list of points by a plane perpendicular on axe corresponding
     *  to the 'cutfeat' dimension at 'cutval' position.
     *
     *  On return:
     *  dataset[ind[0..lim1-1]][cutfeat]<cutval
     *  dataset[ind[lim1..lim2-1]][cutfeat]==cutval
     *  dataset[ind[lim2..count]][cutfeat]>cutval
     */
    void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
    {
        /* Move vector indices for left subtree to front of list. */
        int left = 0;
        int right = count-1;
        for (;; ) {
            while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
            while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
            if (left>right) break;
            std::swap(ind[left], ind[right]); ++left; --right;
        }
        lim1 = left;
        right = count-1;
        for (;; ) {
            while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
            while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
            if (left>right) break;
            std::swap(ind[left], ind[right]); ++left; --right;
        }
        lim2 = left;
    }

    /**
     * Performs an exact nearest neighbor search. The exact search performs a full
     * traversal of the tree.
     */
    void getExactNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, float epsError)
    {
        //		checkID -= 1;  /* Set a different unique ID for each search. */

        if (trees_ > 1) {
            fprintf(stderr,"It doesn't make any sense to use more than one tree for exact search");
        }
        if (trees_>0) {
            searchLevelExact(result, vec, tree_roots_[0], 0.0, epsError);
        }
        assert(result.full());
    }

    /**
     * Performs the approximate nearest-neighbor search. The search is approximate
     * because the tree traversal is abandoned after a given number of descends in
     * the tree.
     */
    void getNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, int maxCheck, float epsError)
    {
        int i;
        BranchSt branch;

        int checkCount = 0;
        Heap<BranchSt>* heap = new Heap<BranchSt>((int)size_);
        DynamicBitset checked(size_);

        /* Search once through each tree down to root. */
        for (i = 0; i < trees_; ++i) {
            searchLevel(result, vec, tree_roots_[i], 0, checkCount, maxCheck, epsError, heap, checked);
        }

        /* Keep searching other branches from heap until finished. */
        while ( heap->popMin(branch) && (checkCount < maxCheck || !result.full() )) {
            searchLevel(result, vec, branch.node, branch.mindist, checkCount, maxCheck, epsError, heap, checked);
        }

        delete heap;

        assert(result.full());
    }


    /**
     *  Search starting from a given node of the tree.  Based on any mismatches at
     *  higher levels, all exemplars below this level must have a distance of
     *  at least "mindistsq".
     */
    void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, NodePtr node, DistanceType mindist, int& checkCount, int maxCheck,
                     float epsError, Heap<BranchSt>* heap, DynamicBitset& checked)
    {
        if (result_set.worstDist()<mindist) {
            //			printf("Ignoring branch, too far\n");
            return;
        }

        /* If this is a leaf node, then do check and return. */
        if ((node->child1 == NULL)&&(node->child2 == NULL)) {
            /*  Do not check same node more than once when searching multiple trees.
                Once a vector is checked, we set its location in vind to the
                current checkID.
             */
            int index = node->divfeat;
            if ( checked.test(index) || ((checkCount>=maxCheck)&& result_set.full()) ) return;
            checked.set(index);
            checkCount++;

            DistanceType dist = distance_(dataset_[index], vec, veclen_);
            result_set.addPoint(dist,index);

            return;
        }

        /* Which child branch should be taken first? */
        ElementType val = vec[node->divfeat];
        DistanceType diff = val - node->divval;
        NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
        NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;

        /* Create a branch record for the branch not taken.  Add distance
            of this feature boundary (we don't attempt to correct for any
            use of this feature in a parent node, which is unlikely to
            happen and would have only a small effect).  Don't bother
            adding more branches to heap after halfway point, as cost of
            adding exceeds their value.
         */

        DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);
        //		if (2 * checkCount < maxCheck  ||  !result.full()) {
        if ((new_distsq*epsError < result_set.worstDist())||  !result_set.full()) {
            heap->insert( BranchSt(otherChild, new_distsq) );
        }

        /* Call recursively to search next level down. */
        searchLevel(result_set, vec, bestChild, mindist, checkCount, maxCheck, epsError, heap, checked);
    }

    /**
     * Performs an exact search in the tree starting from a node.
     */
    void searchLevelExact(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindist, const float epsError)
    {
        /* If this is a leaf node, then do check and return. */
        if ((node->child1 == NULL)&&(node->child2 == NULL)) {
            int index = node->divfeat;
            DistanceType dist = distance_(dataset_[index], vec, veclen_);
            result_set.addPoint(dist,index);
            return;
        }

        /* Which child branch should be taken first? */
        ElementType val = vec[node->divfeat];
        DistanceType diff = val - node->divval;
        NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
        NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;

        /* Create a branch record for the branch not taken.  Add distance
            of this feature boundary (we don't attempt to correct for any
            use of this feature in a parent node, which is unlikely to
            happen and would have only a small effect).  Don't bother
            adding more branches to heap after halfway point, as cost of
            adding exceeds their value.
         */

        DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);

        /* Call recursively to search next level down. */
        searchLevelExact(result_set, vec, bestChild, mindist, epsError);

        if (new_distsq*epsError<=result_set.worstDist()) {
            searchLevelExact(result_set, vec, otherChild, new_distsq, epsError);
        }
    }


private:

    enum
    {
        /**
         * To improve efficiency, only SAMPLE_MEAN random values are used to
         * compute the mean and variance at each level when building a tree.
         * A value of 100 seems to perform as well as using all values.
         */
        SAMPLE_MEAN = 100,
        /**
         * Top random dimensions to consider
         *
         * When creating random trees, the dimension on which to subdivide is
         * selected at random from among the top RAND_DIM dimensions with the
         * highest variance.  A value of 5 works well.
         */
        RAND_DIM=5
    };


    /**
     * Number of randomized trees that are used
     */
    int trees_;

    /**
     *  Array of indices to vectors in the dataset.
     */
    std::vector<int> vind_;

    /**
     * The dataset used by this index
     */
    const Matrix<ElementType> dataset_;

    IndexParams index_params_;

    size_t size_;
    size_t veclen_;


    DistanceType* mean_;
    DistanceType* var_;


    /**
     * Array of k-d trees used to find neighbours.
     */
    NodePtr* tree_roots_;

    /**
     * Pooled memory allocator.
     *
     * Using a pooled memory allocator is more efficient
     * than allocating memory directly when there is a large
     * number small of memory allocations.
     */
    PooledAllocator pool_;

    Distance distance_;


};   // class KDTreeForest

}

#endif //OPENCV_FLANN_KDTREE_INDEX_H_

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Software Developer
Australia Australia
This member has not yet provided a Biography. Assume it's interesting and varied, and probably something to do with programming.

Comments and Discussions