Click here to Skip to main content
15,881,803 members
Articles / Programming Languages / C++

Capturing Video from Web-camera on Windows 7 and 8 by using Media Foundation

Rate me:
Please Sign up or sign in to vote.
4.96/5 (25 votes)
10 Apr 2013CPOL5 min read 280.1K   33.1K   71  
Simple lib for capturing video from web-camera by using Media Foundation
/***********************************************************************
 * Software License Agreement (BSD License)
 *
 * Copyright 2008-2009  Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
 * Copyright 2008-2009  David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
 *
 * THE BSD LICENSE
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *************************************************************************/

#ifndef OPENCV_FLANN_RESULTSET_H
#define OPENCV_FLANN_RESULTSET_H

#include <algorithm>
#include <cstring>
#include <iostream>
#include <limits>
#include <set>
#include <vector>

namespace cvflann
{

/* This record represents a branch point when finding neighbors in
    the tree.  It contains a record of the minimum distance to the query
    point, as well as the node at which the search resumes.
 */

template <typename T, typename DistanceType>
struct BranchStruct
{
    T node;           /* Tree node at which search resumes */
    DistanceType mindist;     /* Minimum distance to query for all nodes below. */

    BranchStruct() {}
    BranchStruct(const T& aNode, DistanceType dist) : node(aNode), mindist(dist) {}

    bool operator<(const BranchStruct<T, DistanceType>& rhs) const
    {
        return mindist<rhs.mindist;
    }
};


template <typename DistanceType>
class ResultSet
{
public:
    virtual ~ResultSet() {}

    virtual bool full() const = 0;

    virtual void addPoint(DistanceType dist, int index) = 0;

    virtual DistanceType worstDist() const = 0;

};

/**
 * KNNSimpleResultSet does not ensure that the element it holds are unique.
 * Is used in those cases where the nearest neighbour algorithm used does not
 * attempt to insert the same element multiple times.
 */
template <typename DistanceType>
class KNNSimpleResultSet : public ResultSet<DistanceType>
{
    int* indices;
    DistanceType* dists;
    int capacity;
    int count;
    DistanceType worst_distance_;

public:
    KNNSimpleResultSet(int capacity_) : capacity(capacity_), count(0)
    {
    }

    void init(int* indices_, DistanceType* dists_)
    {
        indices = indices_;
        dists = dists_;
        count = 0;
        worst_distance_ = (std::numeric_limits<DistanceType>::max)();
        dists[capacity-1] = worst_distance_;
    }

    size_t size() const
    {
        return count;
    }

    bool full() const
    {
        return count == capacity;
    }


    void addPoint(DistanceType dist, int index)
    {
        if (dist >= worst_distance_) return;
        int i;
        for (i=count; i>0; --i) {
#ifdef FLANN_FIRST_MATCH
            if ( (dists[i-1]>dist) || ((dist==dists[i-1])&&(indices[i-1]>index)) )
#else
            if (dists[i-1]>dist)
#endif
            {
                if (i<capacity) {
                    dists[i] = dists[i-1];
                    indices[i] = indices[i-1];
                }
            }
            else break;
        }
        if (count < capacity) ++count;
        dists[i] = dist;
        indices[i] = index;
        worst_distance_ = dists[capacity-1];
    }

    DistanceType worstDist() const
    {
        return worst_distance_;
    }
};

/**
 * K-Nearest neighbour result set. Ensures that the elements inserted are unique
 */
template <typename DistanceType>
class KNNResultSet : public ResultSet<DistanceType>
{
    int* indices;
    DistanceType* dists;
    int capacity;
    int count;
    DistanceType worst_distance_;

public:
    KNNResultSet(int capacity_) : capacity(capacity_), count(0)
    {
    }

    void init(int* indices_, DistanceType* dists_)
    {
        indices = indices_;
        dists = dists_;
        count = 0;
        worst_distance_ = (std::numeric_limits<DistanceType>::max)();
        dists[capacity-1] = worst_distance_;
    }

    size_t size() const
    {
        return count;
    }

    bool full() const
    {
        return count == capacity;
    }


    void addPoint(DistanceType dist, int index)
    {
        if (dist >= worst_distance_) return;
        int i;
        for (i = count; i > 0; --i) {
#ifdef FLANN_FIRST_MATCH
            if ( (dists[i-1]<=dist) && ((dist!=dists[i-1])||(indices[i-1]<=index)) )
#else
            if (dists[i-1]<=dist)
#endif
            {
                // Check for duplicate indices
                int j = i - 1;
                while ((j >= 0) && (dists[j] == dist)) {
                    if (indices[j] == index) {
                        return;
                    }
                    --j;
                }
                break;
            }
        }

        if (count < capacity) ++count;
        for (int j = count-1; j > i; --j) {
            dists[j] = dists[j-1];
            indices[j] = indices[j-1];
        }
        dists[i] = dist;
        indices[i] = index;
        worst_distance_ = dists[capacity-1];
    }

    DistanceType worstDist() const
    {
        return worst_distance_;
    }
};


/**
 * A result-set class used when performing a radius based search.
 */
template <typename DistanceType>
class RadiusResultSet : public ResultSet<DistanceType>
{
    DistanceType radius;
    int* indices;
    DistanceType* dists;
    size_t capacity;
    size_t count;

public:
    RadiusResultSet(DistanceType radius_, int* indices_, DistanceType* dists_, int capacity_) :
        radius(radius_), indices(indices_), dists(dists_), capacity(capacity_)
    {
        init();
    }

    ~RadiusResultSet()
    {
    }

    void init()
    {
        count = 0;
    }

    size_t size() const
    {
        return count;
    }

    bool full() const
    {
        return true;
    }

    void addPoint(DistanceType dist, int index)
    {
        if (dist<radius) {
            if ((capacity>0)&&(count < capacity)) {
                dists[count] = dist;
                indices[count] = index;
            }
            count++;
        }
    }

    DistanceType worstDist() const
    {
        return radius;
    }

};

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/** Class that holds the k NN neighbors
 * Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
 */
template<typename DistanceType>
class UniqueResultSet : public ResultSet<DistanceType>
{
public:
    struct DistIndex
    {
        DistIndex(DistanceType dist, unsigned int index) :
            dist_(dist), index_(index)
        {
        }
        bool operator<(const DistIndex dist_index) const
        {
            return (dist_ < dist_index.dist_) || ((dist_ == dist_index.dist_) && index_ < dist_index.index_);
        }
        DistanceType dist_;
        unsigned int index_;
    };

    /** Default cosntructor */
    UniqueResultSet() :
        worst_distance_(std::numeric_limits<DistanceType>::max())
    {
    }

    /** Check the status of the set
     * @return true if we have k NN
     */
    inline bool full() const
    {
        return is_full_;
    }

    /** Remove all elements in the set
     */
    virtual void clear() = 0;

    /** Copy the set to two C arrays
     * @param indices pointer to a C array of indices
     * @param dist pointer to a C array of distances
     * @param n_neighbors the number of neighbors to copy
     */
    virtual void copy(int* indices, DistanceType* dist, int n_neighbors = -1) const
    {
        if (n_neighbors < 0) {
            for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
                     dist_indices_.end(); dist_index != dist_index_end; ++dist_index, ++indices, ++dist) {
                *indices = dist_index->index_;
                *dist = dist_index->dist_;
            }
        }
        else {
            int i = 0;
            for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
                     dist_indices_.end(); (dist_index != dist_index_end) && (i < n_neighbors); ++dist_index, ++indices, ++dist, ++i) {
                *indices = dist_index->index_;
                *dist = dist_index->dist_;
            }
        }
    }

    /** Copy the set to two C arrays but sort it according to the distance first
     * @param indices pointer to a C array of indices
     * @param dist pointer to a C array of distances
     * @param n_neighbors the number of neighbors to copy
     */
    virtual void sortAndCopy(int* indices, DistanceType* dist, int n_neighbors = -1) const
    {
        copy(indices, dist, n_neighbors);
    }

    /** The number of neighbors in the set
     * @return
     */
    size_t size() const
    {
        return dist_indices_.size();
    }

    /** The distance of the furthest neighbor
     * If we don't have enough neighbors, it returns the max possible value
     * @return
     */
    inline DistanceType worstDist() const
    {
        return worst_distance_;
    }
protected:
    /** Flag to say if the set is full */
    bool is_full_;

    /** The worst distance found so far */
    DistanceType worst_distance_;

    /** The best candidates so far */
    std::set<DistIndex> dist_indices_;
};

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/** Class that holds the k NN neighbors
 * Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
 */
template<typename DistanceType>
class KNNUniqueResultSet : public UniqueResultSet<DistanceType>
{
public:
    /** Constructor
     * @param capacity the number of neighbors to store at max
     */
    KNNUniqueResultSet(unsigned int capacity) : capacity_(capacity)
    {
        this->is_full_ = false;
        this->clear();
    }

    /** Add a possible candidate to the best neighbors
     * @param dist distance for that neighbor
     * @param index index of that neighbor
     */
    inline void addPoint(DistanceType dist, int index)
    {
        // Don't do anything if we are worse than the worst
        if (dist >= worst_distance_) return;
        dist_indices_.insert(DistIndex(dist, index));

        if (is_full_) {
            if (dist_indices_.size() > capacity_) {
                dist_indices_.erase(*dist_indices_.rbegin());
                worst_distance_ = dist_indices_.rbegin()->dist_;
            }
        }
        else if (dist_indices_.size() == capacity_) {
            is_full_ = true;
            worst_distance_ = dist_indices_.rbegin()->dist_;
        }
    }

    /** Remove all elements in the set
     */
    void clear()
    {
        dist_indices_.clear();
        worst_distance_ = std::numeric_limits<DistanceType>::max();
        is_full_ = false;
    }

protected:
    typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
    using UniqueResultSet<DistanceType>::is_full_;
    using UniqueResultSet<DistanceType>::worst_distance_;
    using UniqueResultSet<DistanceType>::dist_indices_;

    /** The number of neighbors to keep */
    unsigned int capacity_;
};

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/** Class that holds the radius nearest neighbors
 * It is more accurate than RadiusResult as it is not limited in the number of neighbors
 */
template<typename DistanceType>
class RadiusUniqueResultSet : public UniqueResultSet<DistanceType>
{
public:
    /** Constructor
     * @param capacity the number of neighbors to store at max
     */
    RadiusUniqueResultSet(DistanceType radius) :
        radius_(radius)
    {
        is_full_ = true;
    }

    /** Add a possible candidate to the best neighbors
     * @param dist distance for that neighbor
     * @param index index of that neighbor
     */
    void addPoint(DistanceType dist, int index)
    {
        if (dist <= radius_) dist_indices_.insert(DistIndex(dist, index));
    }

    /** Remove all elements in the set
     */
    inline void clear()
    {
        dist_indices_.clear();
    }


    /** Check the status of the set
     * @return alwys false
     */
    inline bool full() const
    {
        return true;
    }

    /** The distance of the furthest neighbor
     * If we don't have enough neighbors, it returns the max possible value
     * @return
     */
    inline DistanceType worstDist() const
    {
        return radius_;
    }
private:
    typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
    using UniqueResultSet<DistanceType>::dist_indices_;
    using UniqueResultSet<DistanceType>::is_full_;

    /** The furthest distance a neighbor can be */
    DistanceType radius_;
};

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/** Class that holds the k NN neighbors within a radius distance
 */
template<typename DistanceType>
class KNNRadiusUniqueResultSet : public KNNUniqueResultSet<DistanceType>
{
public:
    /** Constructor
     * @param capacity the number of neighbors to store at max
     */
    KNNRadiusUniqueResultSet(unsigned int capacity, DistanceType radius)
    {
        this->capacity_ = capacity;
        this->radius_ = radius;
        this->dist_indices_.reserve(capacity_);
        this->clear();
    }

    /** Remove all elements in the set
     */
    void clear()
    {
        dist_indices_.clear();
        worst_distance_ = radius_;
        is_full_ = false;
    }
private:
    using KNNUniqueResultSet<DistanceType>::dist_indices_;
    using KNNUniqueResultSet<DistanceType>::is_full_;
    using KNNUniqueResultSet<DistanceType>::worst_distance_;

    /** The maximum number of neighbors to consider */
    unsigned int capacity_;

    /** The maximum distance of a neighbor */
    DistanceType radius_;
};
}

#endif //OPENCV_FLANN_RESULTSET_H

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Software Developer
Australia Australia
This member has not yet provided a Biography. Assume it's interesting and varied, and probably something to do with programming.

Comments and Discussions