Click here to Skip to main content
15,884,537 members
Articles / Programming Languages / C

How to develop a virtual disk for Windows

,
Rate me:
Please Sign up or sign in to vote.
4.99/5 (98 votes)
15 Feb 2010CPOL10 min read 195.4K   8.2K   335  
This article is oriented to Windows-developers and considers how to create virtual disk in Windows system.
/*
 * Copyright (c) 1999
 * Silicon Graphics Computer Systems, Inc.
 *
 * Copyright (c) 1999 
 * Boris Fomitchev
 *
 * This material is provided "as is", with absolutely no warranty expressed
 * or implied. Any use is at your own risk.
 *
 * Permission to use or copy this software for any purpose is hereby granted 
 * without fee, provided the above notices are retained on all copies.
 * Permission to modify the code and to distribute modified code is granted,
 * provided the above notices are retained, and a notice that the code was
 * modified is included with the above copyright notice.
 *
 */ 
#ifndef _STLP_internal_complex_h
#define _STLP_internal_complex_h

// This header declares the template class complex, as described in 
// in the draft C++ standard.  Single-precision complex numbers
// are complex<float>, double-precision are complex<double>, and
// quad precision are complex<long double>.

// Note that the template class complex is declared within namespace
// std, as called for by the draft C++ standard.  

#include <stl/_cmath.h>
#include <iosfwd>

_STLP_BEGIN_NAMESPACE

#if !defined(_STLP_NO_COMPLEX_SPECIALIZATIONS)		//*TY 02/25/2000 - added for MPW compiler workaround

template <class _Tp> struct complex;

_STLP_TEMPLATE_NULL  struct _STLP_CLASS_DECLSPEC complex<float>;
_STLP_TEMPLATE_NULL  struct _STLP_CLASS_DECLSPEC complex<double>;
# ifndef _STLP_NO_LONG_DOUBLE
_STLP_TEMPLATE_NULL  struct _STLP_CLASS_DECLSPEC complex<long double>;
# endif
# endif

template <class _Tp>
struct complex {
  typedef _Tp value_type;
  typedef complex<_Tp> _Self;

  // Constructors, destructor, assignment operator.
  complex() : _M_re(0), _M_im(0) {}
  complex(const value_type& __x)
    : _M_re(__x), _M_im(0) {}
  complex(const value_type& __x, const value_type& __y)
    : _M_re(__x), _M_im(__y) {}
  complex(const _Self& __z)
    : _M_re(__z._M_re), _M_im(__z._M_im) {}

  _Self& operator=(const _Self& __z) {
    _M_re = __z._M_re;
    _M_im = __z._M_im;
    return *this;
  }

#if defined (_STLP_MEMBER_TEMPLATES) && ( defined (_STLP_FUNCTION_TMPL_PARTIAL_ORDER) || defined(_STLP_NO_COMPLEX_SPECIALIZATIONS))
  template <class _Tp2>
  explicit complex(const complex<_Tp2>& __z)
    : _M_re(__z._M_re), _M_im(__z._M_im) {}

  template <class _Tp2>
  _Self& operator=(const complex<_Tp2>& __z) {
    _M_re = __z._M_re;
    _M_im = __z._M_im;
    return *this;
  }
#endif /* _STLP_MEMBER_TEMPLATES */

  // Element access.
  value_type real() const { return _M_re; }
  value_type imag() const { return _M_im; }

  // Arithmetic op= operations involving one real argument.

  _Self& operator= (const value_type& __x) {
    _M_re = __x;
    _M_im = 0;
    return *this;
  }
  _Self& operator+= (const value_type& __x) {
    _M_re += __x;
    return *this;
  }
  _Self& operator-= (const value_type& __x) {
    _M_re -= __x;
    return *this;
  }
  _Self& operator*= (const value_type& __x) {
    _M_re *= __x;
    _M_im *= __x;
    return *this;
  }
  _Self& operator/= (const value_type& __x) {
    _M_re /= __x;
    _M_im /= __x;
    return *this;
  }

  // Arithmetic op= operations involving two complex arguments.

  static void  _STLP_CALL _div(const value_type& __z1_r, const value_type& __z1_i,
                   const value_type& __z2_r, const value_type& __z2_i,
                   value_type& __res_r, value_type& __res_i);

  static void _STLP_CALL _div(const value_type& __z1_r, 
                   const value_type& __z2_r, const value_type& __z2_i,
                   value_type& __res_r, value_type& __res_i);

#if defined ( _STLP_MEMBER_TEMPLATES ) // && defined (_STLP_FUNCTION_TMPL_PARTIAL_ORDER)

  template <class _Tp2> _Self& operator+= (const complex<_Tp2>& __z) {
    _M_re += __z._M_re;
    _M_im += __z._M_im;
    return *this;
  }

  template <class _Tp2> _Self& operator-= (const complex<_Tp2>& __z) {
    _M_re -= __z._M_re;
    _M_im -= __z._M_im;
    return *this;
  }

  template <class _Tp2> _Self& operator*= (const complex<_Tp2>& __z) {
    value_type __r = _M_re * __z._M_re - _M_im * __z._M_im;
    value_type __i = _M_re * __z._M_im + _M_im * __z._M_re;
    _M_re = __r;
    _M_im = __i;
    return *this;
  }

  template <class _Tp2> _Self& operator/= (const complex<_Tp2>& __z) {
    value_type __r;
    value_type __i;
    _div(_M_re, _M_im, __z._M_re, __z._M_im, __r, __i);
    _M_re = __r;
    _M_im = __i;
    return *this;
  }

#endif /* _STLP_MEMBER_TEMPLATES */

  _Self& operator+= (const _Self& __z) {
    _M_re += __z._M_re;
    _M_im += __z._M_im;
    return *this;
  }

  _Self& operator-= (const _Self& __z) {
    _M_re -= __z._M_re;
    _M_im -= __z._M_im;
    return *this;
  }
  
  _Self& operator*= (const _Self& __z) {
    value_type __r = _M_re * __z._M_re - _M_im * __z._M_im;
    value_type __i = _M_re * __z._M_im + _M_im * __z._M_re;
    _M_re = __r;
    _M_im = __i;
    return *this;
  }

  _Self& operator/= (const _Self& __z) {
    value_type __r;
    value_type __i;
    _div(_M_re, _M_im, __z._M_re, __z._M_im, __r, __i);
    _M_re = __r;
    _M_im = __i;
    return *this;
  }

  // Data members.
  value_type _M_re;
  value_type _M_im;
};

#if !defined(_STLP_NO_COMPLEX_SPECIALIZATIONS)		//*TY 02/25/2000 - added for MPW compiler workaround
// Explicit specializations for float, double, long double.  The only
// reason for these specializations is to enable automatic conversions
// from complex<float> to complex<double>, and complex<double> to
// complex<long double>.


_STLP_TEMPLATE_NULL
struct _STLP_CLASS_DECLSPEC complex<float> {
  typedef float value_type;
  typedef complex<float> _Self;
  // Constructors, destructor, assignment operator.

  complex(value_type __x = 0.0, value_type __y = 0.0)
    : _M_re(__x), _M_im(__y) {}

  complex(const complex<float>& __z)    : _M_re(__z._M_re), _M_im(__z._M_im) {} 

  inline explicit complex(const complex<double>& __z);
# ifndef _STLP_NO_LONG_DOUBLE
  inline explicit complex(const complex<long double>& __z);
# endif
  // Element access.
  value_type real() const { return _M_re; }
  value_type imag() const { return _M_im; }

  // Arithmetic op= operations involving one real argument.

  _Self& operator= (value_type __x) {
    _M_re = __x;
    _M_im = 0;
    return *this;
  }
  _Self& operator+= (value_type __x) {
    _M_re += __x;
    return *this;
  }
  _Self& operator-= (value_type __x) {
    _M_re -= __x;
    return *this;
  }
  _Self& operator*= (value_type __x) {
    _M_re *= __x;
    _M_im *= __x;
    return *this;
  }
  _Self& operator/= (value_type __x) {
    _M_re /= __x;
    _M_im /= __x;
    return *this;
  }

  // Arithmetic op= operations involving two complex arguments.

  static void _STLP_CALL _div(const float& __z1_r, const float& __z1_i,
                              const float& __z2_r, const float& __z2_i,
                              float& __res_r, float& __res_i);
    
  static void _STLP_CALL _div(const float& __z1_r, 
                              const float& __z2_r, const float& __z2_i,
                              float& __res_r, float& __res_i);
    
#if defined (_STLP_MEMBER_TEMPLATES)

  template <class _Tp2>
  complex<float>& operator=(const complex<_Tp2>& __z) {
    _M_re = __z._M_re;
    _M_im = __z._M_im;
    return *this;
  }

  template <class _Tp2>
  complex<float>& operator+= (const complex<_Tp2>& __z) {
    _M_re += __z._M_re;
    _M_im += __z._M_im;
    return *this;
  }

  template <class _Tp2>
  complex<float>& operator-= (const complex<_Tp2>& __z) {
    _M_re -= __z._M_re;
    _M_im -= __z._M_im;
    return *this;
  }

  template <class _Tp2>
  complex<float>& operator*= (const complex<_Tp2>& __z) {
    float __r = _M_re * __z._M_re - _M_im * __z._M_im;
    float __i = _M_re * __z._M_im + _M_im * __z._M_re;
    _M_re = __r;
    _M_im = __i;
    return *this;
  }

  template <class _Tp2>
  complex<float>& operator/= (const complex<_Tp2>& __z) {
    float __r;
    float __i;
    _div(_M_re, _M_im, __z._M_re, __z._M_im, __r, __i);
    _M_re = __r;
    _M_im = __i;
    return *this;
  }

#endif /* _STLP_MEMBER_TEMPLATES */

  _Self& operator=(const _Self& __z) {
    _M_re = __z._M_re;
    _M_im = __z._M_im;
    return *this;
  }

  _Self& operator+= (const _Self& __z) {
    _M_re += __z._M_re;
    _M_im += __z._M_im;
    return *this;
  }

  _Self& operator-= (const _Self& __z) {
    _M_re -= __z._M_re;
    _M_im -= __z._M_im;
    return *this;
  }
  
  _Self& operator*= (const _Self& __z) {
    value_type __r = _M_re * __z._M_re - _M_im * __z._M_im;
    value_type __i = _M_re * __z._M_im + _M_im * __z._M_re;
    _M_re = __r;
    _M_im = __i;
    return *this;
  }

  _Self& operator/= (const _Self& __z) {
    value_type __r;
    value_type __i;
    _div(_M_re, _M_im, __z._M_re, __z._M_im, __r, __i);
    _M_re = __r;
    _M_im = __i;
    return *this;
  }

  // Data members.
  value_type _M_re;
  value_type _M_im;
};

_STLP_TEMPLATE_NULL struct _STLP_CLASS_DECLSPEC complex<double> {
  typedef double value_type;
  typedef complex<double> _Self;

  // Constructors, destructor, assignment operator.

  complex(value_type __x = 0.0, value_type __y = 0.0)
    : _M_re(__x), _M_im(__y) {}

  complex(const complex<double>& __z)
    : _M_re(__z._M_re), _M_im(__z._M_im) {}
  inline complex(const complex<float>& __z);
# ifndef _STLP_NO_LONG_DOUBLE
  explicit inline complex(const complex<long double>& __z);
# endif
  // Element access.
  value_type real() const { return _M_re; }
  value_type imag() const { return _M_im; }

  // Arithmetic op= operations involving one real argument.

  _Self& operator= (value_type __x) {
    _M_re = __x;
    _M_im = 0;
    return *this;
  }
  _Self& operator+= (value_type __x) {
    _M_re += __x;
    return *this;
  }
  _Self& operator-= (value_type __x) {
    _M_re -= __x;
    return *this;
  }
  _Self& operator*= (value_type __x) {
    _M_re *= __x;
    _M_im *= __x;
    return *this;
  }
  _Self& operator/= (value_type __x) {
    _M_re /= __x;
    _M_im /= __x;
    return *this;
  }

  // Arithmetic op= operations involving two complex arguments.

  static void _STLP_CALL _div(const double& __z1_r, const double& __z1_i,
                              const double& __z2_r, const double& __z2_i,
                              double& __res_r, double& __res_i);
  static void _STLP_CALL _div(const double& __z1_r, 
                              const double& __z2_r, const double& __z2_i,
                              double& __res_r, double& __res_i);
    
#if defined (_STLP_MEMBER_TEMPLATES) && defined (_STLP_FUNCTION_TMPL_PARTIAL_ORDER)

  template <class _Tp2>
  complex<double>& operator=(const complex<_Tp2>& __z) {
    _M_re = __z._M_re;
    _M_im = __z._M_im;
    return *this;
  }

  template <class _Tp2>
  complex<double>& operator+= (const complex<_Tp2>& __z) {
    _M_re += __z._M_re;
    _M_im += __z._M_im;
    return *this;
  }

  template <class _Tp2>
  complex<double>& operator-= (const complex<_Tp2>& __z) {
    _M_re -= __z._M_re;
    _M_im -= __z._M_im;
    return *this;
  }

  template <class _Tp2>
  complex<double>& operator*= (const complex<_Tp2>& __z) {
    double __r = _M_re * __z._M_re - _M_im * __z._M_im;
    double __i = _M_re * __z._M_im + _M_im * __z._M_re;
    _M_re = __r;
    _M_im = __i;
    return *this;
  }

  template <class _Tp2>
  complex<double>& operator/= (const complex<_Tp2>& __z) {
    double __r;
    double __i;
    _div(_M_re, _M_im, __z._M_re, __z._M_im, __r, __i);
    _M_re = __r;
    _M_im = __i;
    return *this;
  }

#endif /* _STLP_MEMBER_TEMPLATES */

  _Self& operator=(const _Self& __z) {
    _M_re = __z._M_re;
    _M_im = __z._M_im;
    return *this;
  }

  _Self& operator+= (const _Self& __z) {
    _M_re += __z._M_re;
    _M_im += __z._M_im;
    return *this;
  }

  _Self& operator-= (const _Self& __z) {
    _M_re -= __z._M_re;
    _M_im -= __z._M_im;
    return *this;
  }
  
  _Self& operator*= (const _Self& __z) {
    value_type __r = _M_re * __z._M_re - _M_im * __z._M_im;
    value_type __i = _M_re * __z._M_im + _M_im * __z._M_re;
    _M_re = __r;
    _M_im = __i;
    return *this;
  }

  _Self& operator/= (const _Self& __z) {
    value_type __r;
    value_type __i;
    _div(_M_re, _M_im, __z._M_re, __z._M_im, __r, __i);
    _M_re = __r;
    _M_im = __i;
    return *this;
  }

  // Data members.
  value_type _M_re;
  value_type _M_im;
};

# ifndef _STLP_NO_LONG_DOUBLE

_STLP_TEMPLATE_NULL struct _STLP_CLASS_DECLSPEC complex<long double> {
  typedef long double value_type;
  typedef complex<long double> _Self;

  // Constructors, destructor, assignment operator.
  complex(value_type __x = 0.0, value_type __y = 0.0)
    : _M_re(__x), _M_im(__y) {}

  complex(const complex<long double>& __z)
    : _M_re(__z._M_re), _M_im(__z._M_im) {}
  inline complex(const complex<float>& __z);
  inline complex(const complex<double>& __z);

  // Element access.
  value_type real() const { return _M_re; }
  value_type imag() const { return _M_im; }

  // Arithmetic op= operations involving one real argument.

  _Self& operator= (value_type __x) {
    _M_re = __x;
    _M_im = 0;
    return *this;
  }
  _Self& operator+= (value_type __x) {
    _M_re += __x;
    return *this;
  }
  _Self& operator-= (value_type __x) {
    _M_re -= __x;
    return *this;
  }
  _Self& operator*= (value_type __x) {
    _M_re *= __x;
    _M_im *= __x;
    return *this;
  }
  _Self& operator/= (value_type __x) {
    _M_re /= __x;
    _M_im /= __x;
    return *this;
  }

  // Arithmetic op= operations involving two complex arguments.

  static void _STLP_CALL _div(const long double& __z1_r, const long double& __z1_i,
                              const long double& __z2_r, const long double& __z2_i,
                              long double& __res_r, long double& __res_i);

  static void _STLP_CALL _div(const long double& __z1_r, 
                              const long double& __z2_r, const long double& __z2_i,
                              long double& __res_r, long double& __res_i);

#if defined (_STLP_MEMBER_TEMPLATES) && defined (_STLP_FUNCTION_TMPL_PARTIAL_ORDER)

  template <class _Tp2>
  complex<long double>& operator=(const complex<_Tp2>& __z) {
    _M_re = __z._M_re;
    _M_im = __z._M_im;
    return *this;
  }

  template <class _Tp2>
  complex<long double>& operator+= (const complex<_Tp2>& __z) {
    _M_re += __z._M_re;
    _M_im += __z._M_im;
    return *this;
  }

  template <class _Tp2>
  complex<long double>& operator-= (const complex<_Tp2>& __z) {
    _M_re -= __z._M_re;
    _M_im -= __z._M_im;
    return *this;
  }

  template <class _Tp2>
  complex<long double>& operator*= (const complex<_Tp2>& __z) {
    long double __r = _M_re * __z._M_re - _M_im * __z._M_im;
    long double __i = _M_re * __z._M_im + _M_im * __z._M_re;
    _M_re = __r;
    _M_im = __i;
    return *this;
  }

  template <class _Tp2>
  complex<long double>& operator/= (const complex<_Tp2>& __z) {
    long double __r;
    long double __i;
    _div(_M_re, _M_im, __z._M_re, __z._M_im, __r, __i);
    _M_re = __r;
    _M_im = __i;
    return *this;
  }

#endif /* _STLP_MEMBER_TEMPLATES */

  _Self& operator=(const _Self& __z) {
    _M_re = __z._M_re;
    _M_im = __z._M_im;
    return *this;
  }

  _Self& operator+= (const _Self& __z) {
    _M_re += __z._M_re;
    _M_im += __z._M_im;
    return *this;
  }

  _Self& operator-= (const _Self& __z) {
    _M_re -= __z._M_re;
    _M_im -= __z._M_im;
    return *this;
  }
  
  _Self& operator*= (const _Self& __z) {
    value_type __r = _M_re * __z._M_re - _M_im * __z._M_im;
    value_type __i = _M_re * __z._M_im + _M_im * __z._M_re;
    _M_re = __r;
    _M_im = __i;
    return *this;
  }

  _Self& operator/= (const _Self& __z) {
    value_type __r;
    value_type __i;
    _div(_M_re, _M_im, __z._M_re, __z._M_im, __r, __i);
    _M_re = __r;
    _M_im = __i;
    return *this;
  }

  // Data members.
  value_type _M_re;
  value_type _M_im;
};

# endif /* _STLP_NO_LONG_DOUBLE */

// Converting constructors from one of these three specialized types
// to another.

inline complex<float>::complex(const complex<double>& __z)
  : _M_re(__z._M_re), _M_im(__z._M_im) {}
inline complex<double>::complex(const complex<float>& __z)
  : _M_re(__z._M_re), _M_im(__z._M_im) {}
# ifndef _STLP_NO_LONG_DOUBLE
inline complex<float>::complex(const complex<long double>& __z)
  : _M_re(__z._M_re), _M_im(__z._M_im) {}
inline complex<double>::complex(const complex<long double>& __z)
  : _M_re(__z._M_re), _M_im(__z._M_im) {}
inline complex<long double>::complex(const complex<float>& __z)
  : _M_re(__z._M_re), _M_im(__z._M_im) {}
inline complex<long double>::complex(const complex<double>& __z)
  : _M_re(__z._M_re), _M_im(__z._M_im) {}
# endif

# endif /* SPECIALIZATIONS */

// Unary non-member arithmetic operators.

template <class _Tp>
inline complex<_Tp> _STLP_CALL operator+(const complex<_Tp>& __z) {
  return __z;
}

template <class _Tp>
inline complex<_Tp> _STLP_CALL  operator-(const complex<_Tp>& __z) {
  return complex<_Tp>(-__z._M_re, -__z._M_im);
}

// Non-member arithmetic operations involving one real argument.

template <class _Tp> 
inline complex<_Tp> _STLP_CALL operator+(const _Tp& __x, const complex<_Tp>& __z) {
  return complex<_Tp>(__x + __z._M_re, __z._M_im);
}

template <class _Tp> 
inline complex<_Tp> _STLP_CALL operator+(const complex<_Tp>& __z, const _Tp& __x) {
  return complex<_Tp>(__z._M_re + __x, __z._M_im);
}

template <class _Tp> 
inline complex<_Tp> _STLP_CALL operator-(const _Tp& __x, const complex<_Tp>& __z) {
  return complex<_Tp>(__x - __z._M_re, -__z._M_im);
}

template <class _Tp> 
inline complex<_Tp> _STLP_CALL operator-(const complex<_Tp>& __z, const _Tp& __x) {
  return complex<_Tp>(__z._M_re - __x, __z._M_im);
}

template <class _Tp> 
inline complex<_Tp> _STLP_CALL operator*(const _Tp& __x, const complex<_Tp>& __z) {
  return complex<_Tp>(__x * __z._M_re, __x * __z._M_im);
}

template <class _Tp> 
inline complex<_Tp> _STLP_CALL operator*(const complex<_Tp>& __z, const _Tp& __x) {
  return complex<_Tp>(__z._M_re * __x, __z._M_im * __x);
}

template <class _Tp> 
inline complex<_Tp> _STLP_CALL operator/(const _Tp& __x, const complex<_Tp>& __z) {
  complex<_Tp> __result;
  complex<_Tp>::_div(__x,
                     __z._M_re, __z._M_im,
                     __result._M_re, __result._M_im);
  return __result;
}

template <class _Tp> 
inline complex<_Tp> _STLP_CALL operator/(const complex<_Tp>& __z, const _Tp& __x) {
  return complex<_Tp>(__z._M_re / __x, __z._M_im / __x);
}

// Non-member arithmetic operations involving two complex arguments

template <class _Tp> 
inline complex<_Tp> _STLP_CALL 
operator+(const complex<_Tp>& __z1, const complex<_Tp>& __z2) {
  return complex<_Tp>(__z1._M_re + __z2._M_re, __z1._M_im + __z2._M_im);
}

template <class _Tp> 
inline complex<_Tp> _STLP_CALL 
operator-(const complex<_Tp>& __z1, const complex<_Tp>& __z2) {
  return complex<_Tp>(__z1._M_re - __z2._M_re, __z1._M_im - __z2._M_im);
}

template <class _Tp> 
inline complex<_Tp> _STLP_CALL 
operator*(const complex<_Tp>& __z1, const complex<_Tp>& __z2) {
  return complex<_Tp>(__z1._M_re * __z2._M_re - __z1._M_im * __z2._M_im,
                      __z1._M_re * __z2._M_im + __z1._M_im * __z2._M_re);
}

template <class _Tp> 
inline complex<_Tp> _STLP_CALL 
operator/(const complex<_Tp>& __z1, const complex<_Tp>& __z2) {
  complex<_Tp> __result;
  complex<_Tp>::_div(__z1._M_re, __z1._M_im,
                     __z2._M_re, __z2._M_im,
                     __result._M_re, __result._M_im);
  return __result;
}

// Comparison operators.

template <class _Tp> 
inline bool _STLP_CALL operator==(const complex<_Tp>& __z1, const complex<_Tp>& __z2) {
  return __z1._M_re == __z2._M_re && __z1._M_im == __z2._M_im;
}

template <class _Tp> 
inline bool _STLP_CALL operator==(const complex<_Tp>& __z, const _Tp& __x) {
  return __z._M_re == __x && __z._M_im == 0;
}

template <class _Tp> 
inline bool _STLP_CALL operator==(const _Tp& __x, const complex<_Tp>& __z) {
  return __x == __z._M_re && 0 == __z._M_im;
}

#ifdef _STLP_FUNCTION_TMPL_PARTIAL_ORDER

template <class _Tp> 
inline bool _STLP_CALL operator!=(const complex<_Tp>& __z1, const complex<_Tp>& __z2) {
  return __z1._M_re != __z2._M_re || __z1._M_im != __z2._M_im;
}

#endif /* _STLP_FUNCTION_TMPL_PARTIAL_ORDER */

template <class _Tp> 
inline bool _STLP_CALL operator!=(const complex<_Tp>& __z, const _Tp& __x) {
  return __z._M_re != __x || __z._M_im != 0;
}

template <class _Tp> 
inline bool _STLP_CALL operator!=(const _Tp& __x, const complex<_Tp>& __z) {
  return __x != __z._M_re || 0 != __z._M_im;
}

// Other basic arithmetic operations

template <class _Tp> 
inline _Tp _STLP_CALL real(const complex<_Tp>& __z) {
  return __z._M_re;
}

template <class _Tp> 
inline _Tp _STLP_CALL imag(const complex<_Tp>& __z) {
  return __z._M_im;
}

template <class _Tp>
_Tp _STLP_CALL abs(const complex<_Tp>& __z) {
  return _Tp(abs(complex<double>(double(__z.real()), double(__z.imag()))));
}

template <class _Tp>
_Tp _STLP_CALL arg(const complex<_Tp>& __z) {
  return _Tp(arg(complex<double>(double(__z.real()), double(__z.imag()))));
}

template <class _Tp>
inline _Tp _STLP_CALL norm(const complex<_Tp>& __z) {
  return __z._M_re * __z._M_re + __z._M_im * __z._M_im;
}

template <class _Tp>
inline complex<_Tp> _STLP_CALL conj(const complex<_Tp>& __z) {
  return complex<_Tp>(__z._M_re, -__z._M_im);
}

template <class _Tp>
complex<_Tp> _STLP_CALL polar(const _Tp& __rho) {
  return complex<_Tp>(__rho, 0);
}

template <class _Tp>
complex<_Tp> _STLP_CALL polar(const _Tp& __rho, const _Tp& __phi) {
  complex<double> __tmp = polar(double(__rho), double(__phi));
  return complex<_Tp>(_Tp(__tmp.real()), _Tp(__tmp.imag()));
}


_STLP_TEMPLATE_NULL
_STLP_DECLSPEC float  _STLP_CALL abs(const complex<float>&);
_STLP_TEMPLATE_NULL
_STLP_DECLSPEC double  _STLP_CALL abs(const complex<double>&);
_STLP_TEMPLATE_NULL
_STLP_DECLSPEC float  _STLP_CALL arg(const complex<float>&);
_STLP_TEMPLATE_NULL
_STLP_DECLSPEC double  _STLP_CALL arg(const complex<double>&);
_STLP_TEMPLATE_NULL
_STLP_DECLSPEC complex<float> _STLP_CALL polar(const float& __rho, const float& __phi);
_STLP_TEMPLATE_NULL
_STLP_DECLSPEC complex<double> _STLP_CALL polar(const double& __rho, const double& __phi);


# ifndef _STLP_NO_LONG_DOUBLE
_STLP_TEMPLATE_NULL
_STLP_DECLSPEC long double  _STLP_CALL arg(const complex<long double>&);
_STLP_TEMPLATE_NULL
_STLP_DECLSPEC long double  _STLP_CALL abs(const complex<long double>&);
_STLP_TEMPLATE_NULL
_STLP_DECLSPEC complex<long double> _STLP_CALL polar(const long double&, const long double&);
# endif


#ifdef _STLP_USE_NEW_IOSTREAMS

// Complex output, in the form (re,im).  We use a two-step process 
// involving stringstream so that we get the padding right.  
template <class _Tp, class _CharT, class _Traits>
basic_ostream<_CharT, _Traits>&  _STLP_CALL 
operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __z);

template <class _Tp, class _CharT, class _Traits>
basic_istream<_CharT, _Traits>& _STLP_CALL 
operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __z);

// Specializations for narrow characters; lets us avoid widen.

_STLP_OPERATOR_TEMPLATE
_STLP_DECLSPEC basic_istream<char, char_traits<char> >& _STLP_CALL 
operator>>(basic_istream<char, char_traits<char> >& __is, complex<float>& __z);

_STLP_OPERATOR_TEMPLATE
_STLP_DECLSPEC basic_istream<char, char_traits<char> >& _STLP_CALL 
operator>>(basic_istream<char, char_traits<char> >& __is, complex<double>& __z);


_STLP_OPERATOR_TEMPLATE
_STLP_DECLSPEC basic_ostream<char, char_traits<char> >& _STLP_CALL 
operator<<(basic_ostream<char, char_traits<char> >& __is, const complex<float>& __z);

_STLP_OPERATOR_TEMPLATE
_STLP_DECLSPEC basic_ostream<char, char_traits<char> >& _STLP_CALL 
operator<<(basic_ostream<char, char_traits<char> >& __is, const complex<double>& __z);

#  if ! defined (_STLP_NO_LONG_DOUBLE)
_STLP_OPERATOR_TEMPLATE
_STLP_DECLSPEC basic_istream<char, char_traits<char> >& _STLP_CALL 
operator>>(basic_istream<char, char_traits<char> >& __is, complex<long double>& __z);

_STLP_OPERATOR_TEMPLATE
_STLP_DECLSPEC basic_ostream<char, char_traits<char> >& _STLP_CALL 
operator<<(basic_ostream<char, char_traits<char> >& __is, const complex<long double>& __z);

# endif

# if defined (_STLP_USE_TEMPLATE_EXPORT) && ! defined (_STLP_NO_WCHAR_T)

_STLP_EXPORT_TEMPLATE basic_istream<wchar_t, char_traits<wchar_t> >& _STLP_CALL operator>>(
        basic_istream<wchar_t, char_traits<wchar_t> >&, complex<double>&);
_STLP_EXPORT_TEMPLATE basic_ostream<wchar_t, char_traits<wchar_t> >& _STLP_CALL operator<<(
        basic_ostream<wchar_t, char_traits<wchar_t> >&, const complex<double>&);
_STLP_EXPORT_TEMPLATE basic_istream<wchar_t, char_traits<wchar_t> >& _STLP_CALL operator>>(
        basic_istream<wchar_t, char_traits<wchar_t> >&, complex<float>&);
_STLP_EXPORT_TEMPLATE basic_ostream<wchar_t, char_traits<wchar_t> >& _STLP_CALL operator<<(
        basic_ostream<wchar_t, char_traits<wchar_t> >&, const complex<float>&);

#  ifndef _STLP_NO_LONG_DOUBLE
_STLP_EXPORT_TEMPLATE basic_istream<wchar_t, char_traits<wchar_t> >& _STLP_CALL operator>>(
        basic_istream<wchar_t, char_traits<wchar_t> >&, complex<long double>&);
_STLP_EXPORT_TEMPLATE basic_ostream<wchar_t, char_traits<wchar_t> >& _STLP_CALL operator<<(
        basic_ostream<wchar_t, char_traits<wchar_t> >&, const complex<long double>&);
#  endif

# endif /* USE_TEMPLATE_EXPORT */

#else /* _STLP_USE_NEW_IOSTREAMS */

template <class _Tp>
ostream& _STLP_CALL operator<<(ostream& s, const complex<_Tp>& __z);

template <class _Tp>
istream& _STLP_CALL  operator>>(istream& s, complex<_Tp>& a);

#endif /* _STLP_USE_NEW_IOSTREAMS */


// Transcendental functions.  These are defined only for float, 
//  double, and long double.  (Sqrt isn't transcendental, of course,
//  but it's included in this section anyway.)

_STLP_DECLSPEC complex<float> _STLP_CALL sqrt(const complex<float>&);

_STLP_DECLSPEC complex<float> _STLP_CALL exp(const complex<float>&);
_STLP_DECLSPEC complex<float> _STLP_CALL  log(const complex<float>&);
_STLP_DECLSPEC complex<float> _STLP_CALL log10(const complex<float>&);

_STLP_DECLSPEC complex<float> _STLP_CALL pow(const complex<float>&, int);
_STLP_DECLSPEC complex<float> _STLP_CALL pow(const complex<float>&, const float&);
_STLP_DECLSPEC complex<float> _STLP_CALL pow(const float&, const complex<float>&);
_STLP_DECLSPEC complex<float> _STLP_CALL pow(const complex<float>&, const complex<float>&);

_STLP_DECLSPEC complex<float> _STLP_CALL sin(const complex<float>&);
_STLP_DECLSPEC complex<float> _STLP_CALL cos(const complex<float>&);
_STLP_DECLSPEC complex<float> _STLP_CALL tan(const complex<float>&);

_STLP_DECLSPEC complex<float> _STLP_CALL sinh(const complex<float>&);
_STLP_DECLSPEC complex<float> _STLP_CALL cosh(const complex<float>&);
_STLP_DECLSPEC complex<float> _STLP_CALL tanh(const complex<float>&);

_STLP_DECLSPEC complex<double> _STLP_CALL sqrt(const complex<double>&);

_STLP_DECLSPEC complex<double> _STLP_CALL exp(const complex<double>&);
_STLP_DECLSPEC complex<double> _STLP_CALL log(const complex<double>&);
_STLP_DECLSPEC complex<double> _STLP_CALL log10(const complex<double>&);

_STLP_DECLSPEC complex<double> _STLP_CALL pow(const complex<double>&, int);
_STLP_DECLSPEC complex<double> _STLP_CALL pow(const complex<double>&, const double&);
_STLP_DECLSPEC complex<double> _STLP_CALL pow(const double&, const complex<double>&);
_STLP_DECLSPEC complex<double> _STLP_CALL pow(const complex<double>&, const complex<double>&);

_STLP_DECLSPEC complex<double> _STLP_CALL sin(const complex<double>&);
_STLP_DECLSPEC complex<double> _STLP_CALL cos(const complex<double>&);
_STLP_DECLSPEC complex<double> _STLP_CALL tan(const complex<double>&);

_STLP_DECLSPEC complex<double> _STLP_CALL sinh(const complex<double>&);
_STLP_DECLSPEC complex<double> _STLP_CALL cosh(const complex<double>&);
_STLP_DECLSPEC complex<double> _STLP_CALL tanh(const complex<double>&);

# ifndef _STLP_NO_LONG_DOUBLE
_STLP_DECLSPEC complex<long double> _STLP_CALL sqrt(const complex<long double>&);
_STLP_DECLSPEC complex<long double> _STLP_CALL exp(const complex<long double>&);
_STLP_DECLSPEC complex<long double> _STLP_CALL log(const complex<long double>&);
_STLP_DECLSPEC complex<long double> _STLP_CALL log10(const complex<long double>&);

_STLP_DECLSPEC complex<long double> _STLP_CALL pow(const complex<long double>&, int);
_STLP_DECLSPEC complex<long double> _STLP_CALL pow(const complex<long double>&, const long double&);
_STLP_DECLSPEC complex<long double> _STLP_CALL pow(const long double&, const complex<long double>&);
_STLP_DECLSPEC complex<long double> _STLP_CALL pow(const complex<long double>&,
                                                   const complex<long double>&);

_STLP_DECLSPEC complex<long double> _STLP_CALL sin(const complex<long double>&);
_STLP_DECLSPEC complex<long double> _STLP_CALL cos(const complex<long double>&);
_STLP_DECLSPEC complex<long double> _STLP_CALL tan(const complex<long double>&);

_STLP_DECLSPEC complex<long double> _STLP_CALL sinh(const complex<long double>&);
_STLP_DECLSPEC complex<long double> _STLP_CALL cosh(const complex<long double>&);
_STLP_DECLSPEC complex<long double> _STLP_CALL tanh(const complex<long double>&);
# endif

_STLP_END_NAMESPACE

# ifndef _STLP_LINK_TIME_INSTANTIATION
#  include <stl/_complex.c>
# endif

#endif /* _STLP_template_complex */

// Local Variables:
// mode:C++
// End:

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Chief Technology Officer Apriorit Inc.
United States United States
ApriorIT is a software research and development company specializing in cybersecurity and data management technology engineering. We work for a broad range of clients from Fortune 500 technology leaders to small innovative startups building unique solutions.

As Apriorit offers integrated research&development services for the software projects in such areas as endpoint security, network security, data security, embedded Systems, and virtualization, we have strong kernel and driver development skills, huge system programming expertise, and are reals fans of research projects.

Our specialty is reverse engineering, we apply it for security testing and security-related projects.

A separate department of Apriorit works on large-scale business SaaS solutions, handling tasks from business analysis, data architecture design, and web development to performance optimization and DevOps.

Official site: https://www.apriorit.com
Clutch profile: https://clutch.co/profile/apriorit
This is a Organisation

33 members

Written By
Team Leader ApriorIT
Ukraine Ukraine
This member has not yet provided a Biography. Assume it's interesting and varied, and probably something to do with programming.

Comments and Discussions