Click here to Skip to main content
15,891,976 members
Articles / Desktop Programming / Windows Forms

GBackupSolution - Visual Studio Extension VSX 2008/2010

Rate me:
Please Sign up or sign in to vote.
4.92/5 (54 votes)
17 Mar 2010CPOL9 min read 85.2K   1.1K   93  
Visual Studio 2008/2010 Extension for backing-up your solution to Gmail.
//#define Trace

// ZipEntry.Write.cs
// ------------------------------------------------------------------
//
// Copyright (c) 2009-2010 Dino Chiesa
// All rights reserved.
//
// This code module is part of DotNetZip, a zipfile class library.
//
// ------------------------------------------------------------------
//
// This code is licensed under the Microsoft Public License.
// See the file License.txt for the license details.
// More info on: http://dotnetzip.codeplex.com
//
// ------------------------------------------------------------------
//
// last saved (in emacs):
// Time-stamp: <2010-February-24 22:34:42>
//
// ------------------------------------------------------------------
//
// This module defines logic for writing (saving) the ZipEntry into a
// zip file.
//
//
// ------------------------------------------------------------------


using System;
using System.IO;
using RE = System.Text.RegularExpressions;

namespace Ionic.Zip
{

    public partial class ZipEntry
    {

        internal void WriteCentralDirectoryEntry(Stream s)
        {
            _ConsAndWriteCentralDirectoryEntry(s);
        }


        private void _ConsAndWriteCentralDirectoryEntry(Stream s)
        {
            byte[] bytes = new byte[4096];
            int i = 0;
            // signature
            bytes[i++] = (byte)(ZipConstants.ZipDirEntrySignature & 0x000000FF);
            bytes[i++] = (byte)((ZipConstants.ZipDirEntrySignature & 0x0000FF00) >> 8);
            bytes[i++] = (byte)((ZipConstants.ZipDirEntrySignature & 0x00FF0000) >> 16);
            bytes[i++] = (byte)((ZipConstants.ZipDirEntrySignature & 0xFF000000) >> 24);

            // Version Made By
            // workitem 7071
            // We must not overwrite the VersionMadeBy field when writing out a zip archive.
            // The VersionMadeBy tells the zip reader the meaning of the File attributes.
            // Overwriting the VersionMadeBy will result in inconsistent metadata.
            // Consider the scenario where the application opens and reads a zip file that had been created
            // on Linux. Then the app adds one file to the Zip archive, and saves it.
            // The file attributes for all the entries added on Linux will be significant
            // for Linux.  Therefore the VersionMadeBy for those entries must not be changed.
            // Only the entries that are actually created on Windows NTFS should get the
            // VersionMadeBy indicating Windows/NTFS.
            bytes[i++] = (byte)(_VersionMadeBy & 0x00FF);
            bytes[i++] = (byte)((_VersionMadeBy & 0xFF00) >> 8);

            // Apparently we want to duplicate the extra field here; we cannot
            // simply zero it out and assume tools and apps will use the right one.

            ////Int16 extraFieldLengthSave = (short)(_EntryHeader[28] + _EntryHeader[29] * 256);
            ////_EntryHeader[28] = 0;
            ////_EntryHeader[29] = 0;

            // Version Needed, Bitfield, compression method, lastmod,
            // crc, compressed and uncompressed sizes, filename length and extra field length.
            // These are all present in the local file header, but they may be zero values there.
            // So we cannot just copy them.

            Int16 versionNeededToExtract = (Int16)(_OutputUsesZip64.Value ? 45 : 20);

            bytes[i++] = (byte)(versionNeededToExtract & 0x00FF);
            bytes[i++] = (byte)((versionNeededToExtract & 0xFF00) >> 8);

            bytes[i++] = (byte)(_BitField & 0x00FF);
            bytes[i++] = (byte)((_BitField & 0xFF00) >> 8);

            bytes[i++] = (byte)(_CompressionMethod & 0x00FF);
            bytes[i++] = (byte)((_CompressionMethod & 0xFF00) >> 8);

#if AESCRYPTO
            if (Encryption == EncryptionAlgorithm.WinZipAes128 ||
            Encryption == EncryptionAlgorithm.WinZipAes256)
            {
                i -= 2;
                bytes[i++] = 0x63;
                bytes[i++] = 0;
            }
#endif

            bytes[i++] = (byte)(_TimeBlob & 0x000000FF);
            bytes[i++] = (byte)((_TimeBlob & 0x0000FF00) >> 8);
            bytes[i++] = (byte)((_TimeBlob & 0x00FF0000) >> 16);
            bytes[i++] = (byte)((_TimeBlob & 0xFF000000) >> 24);
            bytes[i++] = (byte)(_Crc32 & 0x000000FF);
            bytes[i++] = (byte)((_Crc32 & 0x0000FF00) >> 8);
            bytes[i++] = (byte)((_Crc32 & 0x00FF0000) >> 16);
            bytes[i++] = (byte)((_Crc32 & 0xFF000000) >> 24);

            int j = 0;
            if (_OutputUsesZip64.Value)
            {
                // CompressedSize (Int32) and UncompressedSize - all 0xFF
                for (j = 0; j < 8; j++)
                    bytes[i++] = 0xFF;
            }
            else
            {
                bytes[i++] = (byte)(_CompressedSize & 0x000000FF);
                bytes[i++] = (byte)((_CompressedSize & 0x0000FF00) >> 8);
                bytes[i++] = (byte)((_CompressedSize & 0x00FF0000) >> 16);
                bytes[i++] = (byte)((_CompressedSize & 0xFF000000) >> 24);

                bytes[i++] = (byte)(_UncompressedSize & 0x000000FF);
                bytes[i++] = (byte)((_UncompressedSize & 0x0000FF00) >> 8);
                bytes[i++] = (byte)((_UncompressedSize & 0x00FF0000) >> 16);
                bytes[i++] = (byte)((_UncompressedSize & 0xFF000000) >> 24);
            }

            byte[] FileNameBytes = _GetEncodedFileNameBytes();
            Int16 filenameLength = (Int16)FileNameBytes.Length;
            bytes[i++] = (byte)(filenameLength & 0x00FF);
            bytes[i++] = (byte)((filenameLength & 0xFF00) >> 8);


            // do this again because now we have real data
            _presumeZip64 = _OutputUsesZip64.Value;
            _Extra = ConstructExtraField(true);

            Int16 extraFieldLength = (Int16)((_Extra == null) ? 0 : _Extra.Length);
            bytes[i++] = (byte)(extraFieldLength & 0x00FF);
            bytes[i++] = (byte)((extraFieldLength & 0xFF00) >> 8);

            // File (entry) Comment Length
            // the _CommentBytes private field was set during WriteHeader()
            int commentLength = (_CommentBytes == null) ? 0 : _CommentBytes.Length;

            // the size of our buffer defines the max length of the comment we can write
            if (commentLength + i > bytes.Length) commentLength = bytes.Length - i;
            bytes[i++] = (byte)(commentLength & 0x00FF);
            bytes[i++] = (byte)((commentLength & 0xFF00) >> 8);

            // Disk number start
            bytes[i++] = (byte)(_diskNumber & 0x00FF);
            bytes[i++] = (byte)((_diskNumber & 0xFF00) >> 8);

            // internal file attrs
            // workitem 7801
            bytes[i++] = (byte)((_IsText) ? 1 : 0); // lo bit: filetype hint.  0=bin, 1=txt.
            bytes[i++] = 0;

            // external file attrs
            // workitem 7071
            bytes[i++] = (byte)(_ExternalFileAttrs & 0x000000FF);
            bytes[i++] = (byte)((_ExternalFileAttrs & 0x0000FF00) >> 8);
            bytes[i++] = (byte)((_ExternalFileAttrs & 0x00FF0000) >> 16);
            bytes[i++] = (byte)((_ExternalFileAttrs & 0xFF000000) >> 24);

            // relative offset of local header
            if (_OutputUsesZip64.Value)
            {
                // Value==true means it used Zip64.
                for (j = 0; j < 4; j++) bytes[i++] = 0xFF;
            }
            else
            {
                bytes[i++] = (byte)(_RelativeOffsetOfLocalHeader & 0x000000FF);
                bytes[i++] = (byte)((_RelativeOffsetOfLocalHeader & 0x0000FF00) >> 8);
                bytes[i++] = (byte)((_RelativeOffsetOfLocalHeader & 0x00FF0000) >> 16);
                bytes[i++] = (byte)((_RelativeOffsetOfLocalHeader & 0xFF000000) >> 24);
            }

            // actual filename
            for (j = 0; j < filenameLength; j++)
                bytes[i + j] = FileNameBytes[j];
            i += j;

            // "Extra field"
            if (_Extra != null)
            {
                for (j = 0; j < extraFieldLength; j++)
                    bytes[i + j] = _Extra[j];
                i += j;
            }

            // file (entry) comment
            if (commentLength != 0)
            {
                // now actually write the comment itself into the byte buffer
                for (j = 0; (j < commentLength) && (i + j < bytes.Length); j++)
                    bytes[i + j] = _CommentBytes[j];
                i += j;
            }

            s.Write(bytes, 0, i);
        }


#if INFOZIP_UTF8
        static private bool FileNameIsUtf8(char[] FileNameChars)
        {
            bool isUTF8 = false;
            bool isUnicode = false;
            for (int j = 0; j < FileNameChars.Length; j++)
            {
                byte[] b = System.BitConverter.GetBytes(FileNameChars[j]);
                isUnicode |= (b.Length != 2);
                isUnicode |= (b[1] != 0);
                isUTF8 |= ((b[0] & 0x80) != 0);
            }

            return isUTF8;
        }
#endif


        private byte[] ConstructExtraField(bool forCentralDirectory)
        {
            var listOfBlocks = new System.Collections.Generic.List<byte[]>();
            byte[] block;

            // Conditionally emit an extra field with Zip64 information.
            // If the Zip64 option is Always, we emit the field, before knowing that it's necessary.
            // Later, if it turns out this entry does not need zip64, we'll set the header ID to rubbish and
            // the data will be ignored.  This results in additional overhead metadata
            // in the zip file, but it will be small in comparison to the entry data.
            //
            // On the other hand if the Zip64 option is AsNecessary and it's NOT for the central
            // directory, then we do the same thing.  Or, if the Zip64 option is AsNecessary and
            // it IS for the central directory, and the entry requires zip64, then emit the
            // header.
            if (_container.Zip64 == Zip64Option.Always ||
                (_container.Zip64 == Zip64Option.AsNecessary &&
                 (!forCentralDirectory || _entryRequiresZip64.Value)))
            {
                // add extra field for zip64 here
                // workitem 7924
                int sz = 4 + (forCentralDirectory ? 28 : 16);
                block = new byte[sz];
                int i = 0;

                if (_presumeZip64 || forCentralDirectory)
                {
                    // HeaderId = always use zip64 extensions.
                    block[i++] = 0x01;
                    block[i++] = 0x00;
                }
                else
                {
                    // HeaderId = dummy data now, maybe set to 0x0001 (ZIP64) later.
                    block[i++] = 0x99;
                    block[i++] = 0x99;
                }

                // DataSize
                block[i++] = (byte)(sz - 4);  // decimal 28 or 16  (workitem 7924)
                block[i++] = 0x00;

                // The actual metadata - we may or may not have real values yet...

                // uncompressed size
                Array.Copy(BitConverter.GetBytes(_UncompressedSize), 0, block, i, 8);
                i += 8;
                // compressed size
                Array.Copy(BitConverter.GetBytes(_CompressedSize), 0, block, i, 8);

                // workitem 7924 - only include this if the "extra" field is for use in the central directory.
                // It is unnecessary and not useful for local header; makes WinZip choke.
                if (forCentralDirectory)
                {
                    i += 8;
                    // relative offset
                    Array.Copy(BitConverter.GetBytes(_RelativeOffsetOfLocalHeader), 0, block, i, 8);
                    i += 8;
                    // starting disk number
                    Array.Copy(BitConverter.GetBytes(0), 0, block, i, 4);
                }
                listOfBlocks.Add(block);
            }


#if AESCRYPTO
            if (Encryption == EncryptionAlgorithm.WinZipAes128 ||
                Encryption == EncryptionAlgorithm.WinZipAes256)
            {
                block = new byte[4 + 7];
                int i = 0;
                // extra field for WinZip AES
                // header id
                block[i++] = 0x01;
                block[i++] = 0x99;

                // data size
                block[i++] = 0x07;
                block[i++] = 0x00;

                // vendor number
                block[i++] = 0x01;  // AE-1 - means "Verify CRC"
                block[i++] = 0x00;

                // vendor id "AE"
                block[i++] = 0x41;
                block[i++] = 0x45;

                // key strength
                block[i] = 0xFF;
                int keystrength = GetKeyStrengthInBits(Encryption);
                if (keystrength == 128)
                    block[i] = 1;
                if (keystrength == 256)
                    block[i] = 3;
                i++;

                // actual compression method
                block[i++] = (byte)(_CompressionMethod & 0x00FF);
                block[i++] = (byte)(_CompressionMethod & 0xFF00);

                listOfBlocks.Add(block);
            }
#endif

            if (_ntfsTimesAreSet && _emitNtfsTimes)
            {
                block = new byte[32 + 4];
                // HeaderId   2 bytes    0x000a == NTFS times
                // Datasize   2 bytes    32
                // reserved   4 bytes    ?? don't care
                // timetag    2 bytes    0x0001 == NTFS time
                // size       2 bytes    24 == 8 bytes each for ctime, mtime, atime
                // mtime      8 bytes    win32 ticks since win32epoch
                // atime      8 bytes    win32 ticks since win32epoch
                // ctime      8 bytes    win32 ticks since win32epoch
                int i = 0;
                // extra field for NTFS times
                // header id
                block[i++] = 0x0a;
                block[i++] = 0x00;

                // data size
                block[i++] = 32;
                block[i++] = 0;

                i += 4; // reserved

                // time tag
                block[i++] = 0x01;
                block[i++] = 0x00;

                // data size (again)
                block[i++] = 24;
                block[i++] = 0;

                Int64 z = _Mtime.ToFileTime();
                Array.Copy(BitConverter.GetBytes(z), 0, block, i, 8);
                i += 8;
                z = _Atime.ToFileTime();
                Array.Copy(BitConverter.GetBytes(z), 0, block, i, 8);
                i += 8;
                z = _Ctime.ToFileTime();
                Array.Copy(BitConverter.GetBytes(z), 0, block, i, 8);
                i += 8;

                listOfBlocks.Add(block);
            }

            if (_ntfsTimesAreSet && _emitUnixTimes)
            {
                int len = 5 + 4;
                if (!forCentralDirectory) len += 8;

                block = new byte[len];
                // local form:
                // --------------
                // HeaderId   2 bytes    0x5455 == unix timestamp
                // Datasize   2 bytes    13
                // flags      1 byte     7 (low three bits all set)
                // mtime      4 bytes    seconds since unix epoch
                // atime      4 bytes    seconds since unix epoch
                // ctime      4 bytes    seconds since unix epoch
                //
                // central directory form:
                //---------------------------------
                // HeaderId   2 bytes    0x5455 == unix timestamp
                // Datasize   2 bytes    5
                // flags      1 byte     7 (low three bits all set)
                // mtime      4 bytes    seconds since unix epoch
                //
                int i = 0;
                // extra field for "unix" times
                // header id
                block[i++] = 0x55;
                block[i++] = 0x54;

                // data size
                block[i++] = unchecked((byte)(len - 4));
                block[i++] = 0;

                // flags
                block[i++] = 0x07;

                Int32 z = unchecked((int)((_Mtime - _unixEpoch).TotalSeconds));
                Array.Copy(BitConverter.GetBytes(z), 0, block, i, 4);
                i += 4;
                if (!forCentralDirectory)
                {
                    z = unchecked((int)((_Atime - _unixEpoch).TotalSeconds));
                    Array.Copy(BitConverter.GetBytes(z), 0, block, i, 4);
                    i += 4;
                    z = unchecked((int)((_Ctime - _unixEpoch).TotalSeconds));
                    Array.Copy(BitConverter.GetBytes(z), 0, block, i, 4);
                    i += 4;
                }
                listOfBlocks.Add(block);
            }


            // inject other blocks here...


            // concatenate any blocks we've got:
            byte[] aggregateBlock = null;
            if (listOfBlocks.Count > 0)
            {
                int totalLength = 0;
                int i, current = 0;
                for (i = 0; i < listOfBlocks.Count; i++)
                    totalLength += listOfBlocks[i].Length;
                aggregateBlock = new byte[totalLength];
                for (i = 0; i < listOfBlocks.Count; i++)
                {
                    System.Array.Copy(listOfBlocks[i], 0, aggregateBlock, current, listOfBlocks[i].Length);
                    current += listOfBlocks[i].Length;
                }
            }

            return aggregateBlock;
        }



        // workitem 6513: when writing, use alt encoding only when ibm437 will not do
        private System.Text.Encoding GenerateCommentBytes()
        {
            _CommentBytes = ibm437.GetBytes(_Comment);
            // need to use this form of GetString() for .NET CF
            string s1 = ibm437.GetString(_CommentBytes, 0, _CommentBytes.Length);
            if (s1 == _Comment)
                return ibm437;
            else
            {
                _CommentBytes = _provisionalAlternateEncoding.GetBytes(_Comment);
                return _provisionalAlternateEncoding;
            }
        }


        // workitem 6513
        private byte[] _GetEncodedFileNameBytes()
        {
            // here, we need to flip the backslashes to forward-slashes,
            // also, we need to trim the \\server\share syntax from any UNC path.
            // and finally, we need to remove any leading .\

            string SlashFixed = FileName.Replace("\\", "/");
            string s1 = null;
            if ((_TrimVolumeFromFullyQualifiedPaths) && (FileName.Length >= 3)
                && (FileName[1] == ':') && (SlashFixed[2] == '/'))
            {
                // trim off volume letter, colon, and slash
                s1 = SlashFixed.Substring(3);
            }
            else if ((FileName.Length >= 4)
                     && ((SlashFixed[0] == '/') && (SlashFixed[1] == '/')))
            {
                int n = SlashFixed.IndexOf('/', 2);
                if (n == -1)
                    throw new ArgumentException("The path for that entry appears to be badly formatted");
                s1 = SlashFixed.Substring(n + 1);
            }
            else if ((FileName.Length >= 3)
                     && ((SlashFixed[0] == '.') && (SlashFixed[1] == '/')))
            {
                // trim off dot and slash
                s1 = SlashFixed.Substring(2);
            }
            else
            {
                s1 = SlashFixed;
            }

            // workitem 6513: when writing, use the alternative encoding only when ibm437 will not do.
            byte[] result = ibm437.GetBytes(s1);
            // need to use this form of GetString() for .NET CF
            string s2 = ibm437.GetString(result, 0, result.Length);
            _CommentBytes = null;
            if (s2 == s1)
            {
                // file can be encoded with ibm437, now try comment

                // case 1: no comment.  use ibm437
                if (_Comment == null || _Comment.Length == 0)
                {
                    _actualEncoding = ibm437;
                    return result;
                }

                // there is a comment.  Get the encoded form.
                System.Text.Encoding commentEncoding = GenerateCommentBytes();

                // case 2: if the comment also uses 437, we're good.
                if (commentEncoding.CodePage == 437)
                {
                    _actualEncoding = ibm437;
                    return result;
                }

                // case 3: comment requires non-437 code page.  Use the same
                // code page for the filename.
                _actualEncoding = commentEncoding;
                result = commentEncoding.GetBytes(s1);
                return result;
            }
            else
            {
                // Cannot encode with ibm437 safely.
                // Therefore, use the provisional encoding
                result = _provisionalAlternateEncoding.GetBytes(s1);
                if (_Comment != null && _Comment.Length != 0)
                {
                    _CommentBytes = _provisionalAlternateEncoding.GetBytes(_Comment);
                }

                _actualEncoding = _provisionalAlternateEncoding;
                return result;
            }
        }


        private bool WantReadAgain()
        {
            if (_UncompressedSize < 0x10) return false;
            if (_CompressionMethod == 0x00) return false;
            if (CompressionLevel == Ionic.Zlib.CompressionLevel.None) return false;
            if (_CompressedSize < _UncompressedSize) return false;

            if (this._Source == ZipEntrySource.Stream && !this._sourceStream.CanSeek) return false;

#if AESCRYPTO
            if (_aesCrypto_forWrite != null && (CompressedSize - _aesCrypto_forWrite.SizeOfEncryptionMetadata) <= UncompressedSize + 0x10) return false;
#endif

            if (_zipCrypto_forWrite != null && (CompressedSize - 12) <= UncompressedSize) return false;

            return true;
        }



        private void FigureCompressionMethodForWriting(int cycle)
        {
            // if we've already tried with compression... turn it off this time
            if (cycle > 1)
            {
                _CompressionMethod = 0x0;
                return;
            }
            // compression for directories = 0x00 (No Compression)
            if (IsDirectory)
            {
                _CompressionMethod = 0x0;
                return;
            }

            //             if (__FileDataPosition != -1)
            //             {
            //                 // If at this point, __FileDataPosition is non-zero, that means we've read this
            //                 // entry from an existing zip archive.
            //                 //
            //                 // In this case, we just keep the existing file data and metadata (including
            //                 // CompressionMethod, CRC, compressed size, uncompressed size, etc).
            //                 //
            //                 // All those member variables have been set during read!
            //                 //
            //                 return;
            //             }

            if (this._Source == ZipEntrySource.ZipFile)
            {
                return;
            }

            // If __FileDataPosition is zero, then that means we will get the data
            // from a file or stream.

            // It is never possible to compress a zero-length file, so we check for
            // this condition.


            if (this._Source == ZipEntrySource.Stream)
            {
                // workitem 7742
                if (_sourceStream != null && _sourceStream.CanSeek)
                {
                    // Length prop will throw if CanSeek is false
                    long fileLength = _sourceStream.Length;
                    if (fileLength == 0)
                    {
                        _CompressionMethod = 0x00;
                        return;
                    }
                }
            }
            else if ((this._Source == ZipEntrySource.FileSystem) && (SharedUtilities.GetFileLength(LocalFileName) == 0L))
            {
                _CompressionMethod = 0x00;
                return;
            }

            // Ok, we're getting the data to be compressed from a
            // non-zero-length file or stream, or a file or stream of
            // unknown length, and we presume that it is non-zero.  In
            // that case we check the callback to see if the app wants
            // to tell us whether to compress or not.
            if (SetCompression != null)
                CompressionLevel = SetCompression(LocalFileName, _FileNameInArchive);

            _CompressionMethod = (short)((CompressionLevel == Ionic.Zlib.CompressionLevel.None)
                                          ? 0x00
                                          : 0x08);
            return;

        }



        // write the header info for an entry
        internal void WriteHeader(Stream s, int cycle)
        {
            // Must remember the offset, within the output stream, of this particular
            // entry header.
            //
            // This is for 2 reasons:
            //
            //  1. so we can determine the RelativeOffsetOfLocalHeader (ROLH) for use in the
            //     central directory.
            //  2. so we can seek backward in case there is an error opening or reading
            //     the file, and the application decides to skip the file. In this case,
            //     we need to seek backward in the output stream to allow the next entry
            //     to be added to the zipfile output stream.
            //
            // Normally you would just store the offset before writing to the output
            // stream and be done with it.  But the possibility to use split archives
            // makes this approach ineffective.  In split archives, each file or segment
            // is bound to a max size limit, and each local file header must not span a
            // segment boundary; it must be written contiguously.  If it will fit in the
            // current segment, then the ROLH is just the current Position in the output
            // stream.  If it won't fit, then we need a new file (segment) and the ROLH
            // is zero.
            //
            // But we only can know if it is possible to write a header contiguously
            // after we know the size of the local header, a size that varies with
            // things like filename length, comments, and extra fields.  We have to
            // compute the header fully before knowing whether it will fit.
            //
            // That takes care of item #1 above.  Now, regarding #2.  If an error occurs
            // while computing the local header, we want to just seek backward. The
            // exception handling logic (in the caller of WriteHeader) uses ROLH to
            // scroll back.
            //
            // All this means we have to preserve the starting offset before computing
            // the header, and also we have to compute the offset later, to handle the
            // case of split archives.

            var counter = s as CountingStream;

            // workitem 8098: ok (output)
            // This may change later, for split archives

            // Don't set _RelativeOffsetOfLocalHeader. Instead, set a temp variable.
            // This allows for re-streaming, where a zip entry might be read from a
            // zip archive (and maybe decrypted, and maybe decompressed) and then
            // written to another zip archive, with different settings for
            // compression method, compression level, or encryption algorithm.
            _future_ROLH = (counter != null)
                ? counter.ComputedPosition
                : s.Position;

            int j = 0;
            int i = 0;
            byte[] bytes = new byte[512];  // large enough for looooong filenames (MAX_PATH == 260)

            // signature
            bytes[i++] = (byte)(ZipConstants.ZipEntrySignature & 0x000000FF);
            bytes[i++] = (byte)((ZipConstants.ZipEntrySignature & 0x0000FF00) >> 8);
            bytes[i++] = (byte)((ZipConstants.ZipEntrySignature & 0x00FF0000) >> 16);
            bytes[i++] = (byte)((ZipConstants.ZipEntrySignature & 0xFF000000) >> 24);

            // Design notes for ZIP64:

            // The specification says that the header must include the Compressed and
            // Uncompressed sizes, as well as the CRC32 value.  When creating a zip via
            // streamed processing, these quantities are not known until after the compression
            // is done.  Thus, a typical way to do it is to insert zeroes for these quantities,
            // then do the compression, then seek back to insert the appropriate values, then
            // seek forward to the end of the file data.

            // There is also the option of using bit 3 in the GP bitfield - to specify that
            // there is a data descriptor after the file data containing these three
            // quantities.

            // This works when the size of the quantities is known, either 32-bits or 64 bits as
            // with the ZIP64 extensions.

            // With Zip64, the 4-byte fields are set to 0xffffffff, and there is a
            // corresponding data block in the "extra field" that contains the actual
            // Compressed, uncompressed sizes.  (As well as an additional field, the "Relative
            // Offset of Local Header")

            // The problem is when the app desires to use ZIP64 extensions optionally, only
            // when necessary.  Suppose the library assumes no zip64 extensions when writing
            // the header, then after compression finds that the size of the data requires
            // zip64.  At this point, the header, already written to the file, won't have the
            // necessary data block in the "extra field".  The size of the entry header is
            // fixed, so it is not possible to just "add on" the zip64 data block after
            // compressing the file.  On the other hand, always using zip64 will break
            // interoperability with many other systems and apps.

            // The approach we take is to insert a 32-byte dummy data block in the extra field,
            // whenever zip64 is to be used "as necessary". This data block will get the actual
            // zip64 HeaderId and zip64 metadata if necessary.  If not necessary, the data
            // block will get a meaningless HeaderId (0x1111), and will be filled with zeroes.

            // When zip64 is actually in use, we also need to set the VersionNeededToExtract
            // field to 45.

            // There is one additional wrinkle: using zip64 as necessary conflicts with output
            // to non-seekable devices.  The header is emitted and must indicate whether zip64
            // is in use, before we know if zip64 is necessary.  Because there is no seeking,
            // the header can never be changed.  Therefore, on non-seekable devices,
            // Zip64Option.AsNecessary is the same as Zip64Option.Always.

            // version needed- see AppNote.txt.
            // need v5.1 for PKZIP strong encryption, or v2.0 for no encryption or for PK
            // encryption, 4.5 for zip64.  We may reset this later, as necessary or zip64.

            _presumeZip64 = (_container.Zip64 == Zip64Option.Always || (_container.Zip64 == Zip64Option.AsNecessary && !s.CanSeek));
            Int16 VersionNeededToExtract = (Int16)(_presumeZip64 ? 45 : 20);

            // (i==4)
            bytes[i++] = (byte)(VersionNeededToExtract & 0x00FF);
            bytes[i++] = (byte)((VersionNeededToExtract & 0xFF00) >> 8);

            // get byte array including any encoding
            // workitem 6513
            byte[] FileNameBytes = _GetEncodedFileNameBytes();
            Int16 filenameLength = (Int16)FileNameBytes.Length;

            // general purpose bitfield
            // In the current implementation, this library uses only these bits
            // in the GP bitfield:
            //  bit 0 = if set, indicates the entry is encrypted
            //  bit 3 = if set, indicates the CRC, C and UC sizes follow the file data.
            //  bit 6 = strong encryption - for pkware's meaning of strong encryption
            //  bit 11 = UTF-8 encoding is used in the comment and filename


            // Here we set or unset the encryption bit.
            // _BitField may already be set, as with a ZipEntry added into ZipOutputStream, which
            // has bit 3 always set. We only want to set one bit
            if (_Encryption == EncryptionAlgorithm.None)
                _BitField &= ~1;  // encryption bit OFF
            else
                _BitField |= 1;   // encryption bit ON


            // workitem 7941: WinZip does not the "strong encryption" bit  when using AES.
            // This "Strong Encryption" is a PKWare Strong encryption thing.
            //                 _BitField |= 0x0020;

            // set the UTF8 bit if necessary
            if (ActualEncoding.CodePage == System.Text.Encoding.UTF8.CodePage) _BitField |= 0x0800;

            // The PKZIP spec says that if bit 3 is set (0x0008) in the General Purpose BitField,
            // then the CRC, Compressed size, and uncompressed size are written directly after the
            // file data.
            //
            // These 3 quantities are normally present in the regular zip entry header. But, they
            // are not knowable until after the compression is done. So, in the normal case, we
            //  - write the header, using zeros for these quantities
            //  - compress the data, and incidentally compute these quantities.
            //  - seek back and write the correct values them into the header.
            //
            // This is nice because, while it is more complicated to write the zip file, it is
            // simpler and less error prone to read the zip file, and as a result more
            // applications can read zip files produced this way, with those 3 quantities in the
            // header.
            //
            // But if seeking in the output stream is not possible, then we need to set the
            // appropriate bitfield and emit these quantities after the compressed file data in
            // the output.
            //
            // workitem 7216 - having trouble formatting a zip64 file that is readable by WinZip.
            // not sure why!  What I found is that setting bit 3 and following all the implications,
            // the zip64 file is readable by WinZip 12. and Perl's  IO::Compress::Zip .
            // Perl takes an interesting approach - it always sets bit 3 if ZIP64 in use.
            // DotNetZip now does the same; this gives better compatibility with WinZip 12.

            if (IsDirectory || cycle == 99)
            {
                // (cycle == 99) indicates a zero-length entry written by ZipOutputStream

                _BitField &= ~0x0008;  // unset bit 3 - no "data descriptor" - ever
                _BitField &= ~0x0001;  // unset bit 1 - no encryption - ever
                Encryption = EncryptionAlgorithm.None;
                Password = null;
            }
            else if (!s.CanSeek)
                _BitField |= 0x0008;

#if DONT_GO_THERE
            else if (this.Encryption == EncryptionAlgorithm.PkzipWeak  &&
                     this._Source != ZipEntrySource.ZipFile)
            {
                // Set bit 3 to avoid the double-read perf issue.
                //
                // When PKZIP encryption is used, byte 11 of the encryption header is
                // used as a consistency check. It is normally set to the MSByte of the
                // CRC.  But this means the cRC must be known ebfore compression and
                // encryption, which means the entire stream has to be read twice.  To
                // avoid that, the high-byte of the time blob (when in DOS format) can
                // be used for the consistency check (byte 11 in the encryption header).
                // But this means the entry must have bit 3 set.
                //
                // Previously I used a more complex arrangement - using the methods like
                // FigureCrc32(), PrepOutputStream() and others, in order to manage the
                // seek-back in the source stream.  Why?  Because bit 3 is not always
                // friendly with third-party zip tools, like those on the Mac.
                //
                // This is why this code is still ifdef'd  out.
                //
                // Might consider making this yet another programmable option -
                // AlwaysUseBit3ForPkzip.  But that's for another day.
                //
                _BitField |= 0x0008;
            }
#endif

            // (i==6)
            bytes[i++] = (byte)(_BitField & 0x00FF);
            bytes[i++] = (byte)((_BitField & 0xFF00) >> 8);

            // Here, we want to set values for Compressed Size, Uncompressed Size, and CRC.  If
            // we have __FileDataPosition as not -1 (zero is a valid FDP), then that means we
            // are reading this zip entry from a zip file, and we have good values for those
            // quantities.
            //
            // If _FileDataPosition is -1, then we are constructing this Entry from nothing.  We
            // zero those quantities now, and we will compute actual values for the three
            // quantities later, when we do the compression, and then seek back to write them
            // into the appropriate place in the header.
            if (this.__FileDataPosition == -1)
            {
                //_UncompressedSize = 0; // do not unset - may need this value for restream
                // _Crc32 = 0;           // ditto
                _CompressedSize = 0;
                _crcCalculated = false;
            }

            // set compression method here
            FigureCompressionMethodForWriting(cycle);

            // (i==8) compression method
            bytes[i++] = (byte)(_CompressionMethod & 0x00FF);
            bytes[i++] = (byte)((_CompressionMethod & 0xFF00) >> 8);

            if (cycle == 99)
            {
                // (cycle == 99) indicates a zero-length entry written by ZipOutputStream
                SetZip64Flags();
            }

#if AESCRYPTO
            else if (Encryption == EncryptionAlgorithm.WinZipAes128 || Encryption == EncryptionAlgorithm.WinZipAes256)
            {
                i -= 2;
                bytes[i++] = 0x63;
                bytes[i++] = 0;
            }
#endif


            // LastMod
            _TimeBlob = Ionic.Zip.SharedUtilities.DateTimeToPacked(LastModified);

            // (i==10) time blob
            bytes[i++] = (byte)(_TimeBlob & 0x000000FF);
            bytes[i++] = (byte)((_TimeBlob & 0x0000FF00) >> 8);
            bytes[i++] = (byte)((_TimeBlob & 0x00FF0000) >> 16);
            bytes[i++] = (byte)((_TimeBlob & 0xFF000000) >> 24);

            // (i==14) CRC - if source==filesystem, this is zero now, actual value will be calculated later.
            // if source==archive, this is a bonafide value.
            bytes[i++] = (byte)(_Crc32 & 0x000000FF);
            bytes[i++] = (byte)((_Crc32 & 0x0000FF00) >> 8);
            bytes[i++] = (byte)((_Crc32 & 0x00FF0000) >> 16);
            bytes[i++] = (byte)((_Crc32 & 0xFF000000) >> 24);

            if (_presumeZip64)
            {
                // (i==18) CompressedSize (Int32) and UncompressedSize - all 0xFF for now
                for (j = 0; j < 8; j++)
                    bytes[i++] = 0xFF;
            }
            else
            {
                // (i==18) CompressedSize (Int32) - this value may or may not be bonafide.
                // if source == filesystem, then it is zero, and we'll learn it after we compress.
                // if source == archive, then it is bonafide data.
                bytes[i++] = (byte)(_CompressedSize & 0x000000FF);
                bytes[i++] = (byte)((_CompressedSize & 0x0000FF00) >> 8);
                bytes[i++] = (byte)((_CompressedSize & 0x00FF0000) >> 16);
                bytes[i++] = (byte)((_CompressedSize & 0xFF000000) >> 24);

                // (i==22) UncompressedSize (Int32) - this value may or may not be bonafide.
                bytes[i++] = (byte)(_UncompressedSize & 0x000000FF);
                bytes[i++] = (byte)((_UncompressedSize & 0x0000FF00) >> 8);
                bytes[i++] = (byte)((_UncompressedSize & 0x00FF0000) >> 16);
                bytes[i++] = (byte)((_UncompressedSize & 0xFF000000) >> 24);
            }

            // (i==26) filename length (Int16)
            bytes[i++] = (byte)(filenameLength & 0x00FF);
            bytes[i++] = (byte)((filenameLength & 0xFF00) >> 8);

            _Extra = ConstructExtraField(false);

            // (i==28) extra field length (short)
            Int16 ExtraFieldLength = (Int16)((_Extra == null) ? 0 : _Extra.Length);
            bytes[i++] = (byte)(ExtraFieldLength & 0x00FF);
            bytes[i++] = (byte)((ExtraFieldLength & 0xFF00) >> 8);

            // The filename written to the archive.
            // The buffer is already encoded; we just copy across the bytes.
            for (j = 0; (j < FileNameBytes.Length) && (i + j < bytes.Length); j++)
                bytes[i + j] = FileNameBytes[j];

            i += j;

            // "Extra field"
            if (_Extra != null)
            {
                for (j = 0; j < _Extra.Length; j++)
                    bytes[i + j] = _Extra[j];
                i += j;
            }

            _LengthOfHeader = i;

            // handle split archives
            var zss = s as ZipSegmentedStream;
            if (zss != null)
            {
                zss.ContiguousWrite = true;
                UInt32 requiredSegment = zss.ComputeSegment(i);
                if (requiredSegment != zss.CurrentSegment)
                    _future_ROLH = 0; // rollover!
                else
                    _future_ROLH = zss.Position;

                _diskNumber = requiredSegment;
            }

            // validate the ZIP64 usage
            if (_container.Zip64 == Zip64Option.Never && (uint)_RelativeOffsetOfLocalHeader >= 0xFFFFFFFF)
                throw new ZipException("Offset within the zip archive exceeds 0xFFFFFFFF. Consider setting the UseZip64WhenSaving property on the ZipFile instance.");


            // finally, write the header to the stream
            s.Write(bytes, 0, i);

            // now that the header is written, we can turn off the contiguous write restriction.
            if (zss != null)
                zss.ContiguousWrite = false;

            // preserve this header data, we'll use it again later.
            // ..when seeking backward, to write again, after we have the Crc, compressed
            //   and uncompressed sizes.
            // ..and when writing the central directory structure.
            _EntryHeader = new byte[i];
            for (j = 0; j < i; j++)
                _EntryHeader[j] = bytes[j];
        }




        private Int32 FigureCrc32()
        {
            if (_crcCalculated == false)
            {
                Stream input = null;
                // get the original stream:
                if (this._Source == ZipEntrySource.WriteDelegate)
                {
                    var output = new Ionic.Zlib.CrcCalculatorStream(Stream.Null);
                    // allow the application to write the data
                    this._WriteDelegate(this.FileName, output);
                    _Crc32 = output.Crc;
                }
                else if (this._Source == ZipEntrySource.ZipFile)
                {
                    // nothing to do - the CRC is already set
                }
                else
                {
                    if (this._Source == ZipEntrySource.Stream)
                    {
                        PrepSourceStream();
                        input = _sourceStream;
                    }
                    else if (this._Source == ZipEntrySource.JitStream)
                    {
                        // allow the application to open the stream
                        if (this._sourceStream == null) _sourceStream = this._OpenDelegate(this.FileName);
                        PrepSourceStream();
                        input = this._sourceStream;
                    }
                    else if (this._Source == ZipEntrySource.ZipOutputStream)
                    {
                        //throw new InvalidOperationException("you cannot use PKZIP encryption with a ZipOutputStream.");
                    }
                    else
                    {
                        //input = File.OpenRead(LocalFileName);
                        input = File.Open(LocalFileName, FileMode.Open, FileAccess.Read, FileShare.ReadWrite);
                    }

                    var crc32 = new Ionic.Zlib.CRC32();
                    _Crc32 = crc32.GetCrc32(input);

                    if (_sourceStream == null)
                    {
                        input.Close();
#if !NETCF
                        input.Dispose();
#endif
                    }
                }
                _crcCalculated = true;
            }
            return _Crc32;
        }


        /// <summary>
        ///   Stores the position of the entry source stream, or, if the position is
        ///   already stored, seeks to that position.
        /// </summary>
        ///
        /// <remarks>
        /// <para>
        ///   This method is called in prep for reading the source stream.  If PKZIP
        ///   encryption is used, then we need to calc the CRC32 before doing the
        ///   encryption, because the CRC is used in the 12th byte of the PKZIP
        ///   encryption header.  So, we need to be able to seek backward in the source
        ///   when saving the ZipEntry. This method is called from the place that
        ///   calculates the CRC, and also from the method that does the encryption of
        ///   the file data.
        /// </para>
        ///
        /// <para>
        ///   The first time through, this method sets the _sourceStreamOriginalPosition
        ///   field. Subsequent calls to this method seek to that position.
        /// </para>
        /// </remarks>
        private void PrepSourceStream()
        {
            if (_sourceStream == null)
                throw new ZipException(String.Format("The input stream is null for entry '{0}'.", FileName));

            if (this._sourceStreamOriginalPosition != null)
            {
                // this will happen the 2nd cycle through, if the stream is seekable
                this._sourceStream.Position = this._sourceStreamOriginalPosition.Value;
            }
            else if (this._sourceStream.CanSeek)
            {
                // this will happen the first cycle through, if seekable
                this._sourceStreamOriginalPosition = new Nullable<Int64>(this._sourceStream.Position);
            }
            else if (this.Encryption == EncryptionAlgorithm.PkzipWeak)
            {
                // In general, using PKZIP encryption on a a zip entry whose input
                // comes from a non-seekable stream, is tricky.  Here's why:
                //
                // Byte 11 of the PKZIP encryption header is used for password
                // validation and consistency checknig.
                //
                // Normally, the highest byte of the CRC is used as the 11th (last) byte
                // in the PKZIP encryption header. This means the CRC must be known
                // before encryption is performed. Normally that means we read the full
                // data stream, compute the CRC, then seek back and read it again for
                // the compression+encryption phase. Obviously this is bad for
                // performance with a large input file.
                //
                // There's a twist in the ZIP spec (actually documented only in infozip
                // code, not in the spec itself) that allows the high-order byte of the
                // last modified time for the entry, when the lastmod time is in packed
                // (DOS) format, to be used for Byte 11 in the encryption header. In
                // this case, the bit 3 "data descriptor" must be used.
                //
                // An intelligent implementation would therefore force the use of the
                // bit 3 data descriptor when PKZIP encryption is in use, regardless.
                // This avoids the double-read of the stream to be encrypted.  So far,
                // DotNetZip doesn't do that; it just punts when the input stream is
                // non-seekable, and the output does not use Bit 3.
                //
                // The other option is to use the CRC when it is already available, eg,
                // when the source for the data is a ZipEntry (when the zip file is
                // being updated). In this case we already know the CRC and can just use
                // what we know.

                if (this._Source != ZipEntrySource.ZipFile && ((this._BitField & 0x0008) != 0x0008))
                    throw new ZipException("It is not possible to use PKZIP encryption on a non-seekable input stream");
            }
        }


        /// <summary>
        /// Copy metadata that may have been changed by the app.  We do this when
        /// resetting the zipFile instance.  If the app calls Save() on a ZipFile, then
        /// tries to party on that file some more, we may need to Reset() it , which
        /// means re-reading the entries and then copying the metadata.  I think.
        /// </summary>
        internal void CopyMetaData(ZipEntry source)
        {
            this.__FileDataPosition = source.__FileDataPosition;
            this.CompressionMethod = source.CompressionMethod;
            this._CompressionMethod_FromZipFile = source._CompressionMethod_FromZipFile;
            this._CompressedFileDataSize = source._CompressedFileDataSize;
            this._UncompressedSize = source._UncompressedSize;
            this._BitField = source._BitField;
            this._Source = source._Source;
            this._LastModified = source._LastModified;
            this._Mtime = source._Mtime;
            this._Atime = source._Atime;
            this._Ctime = source._Ctime;
            this._ntfsTimesAreSet = source._ntfsTimesAreSet;
            this._emitUnixTimes = source._emitUnixTimes;
            this._emitNtfsTimes = source._emitNtfsTimes;
        }


        private void OnWriteBlock(Int64 bytesXferred, Int64 totalBytesToXfer)
        {
            if (_container.ZipFile != null)
                _ioOperationCanceled = _container.ZipFile.OnSaveBlock(this, bytesXferred, totalBytesToXfer);
        }



        private void _WriteEntryData(Stream s)
        {
            // Read in the data from the input stream (often a file in the filesystem),
            // and write it to the output stream, calculating a CRC on it as we go.
            // We will also deflate and encrypt as necessary.

            Stream input = null;
            long fdp = -1L;
            try
            {
                // Want to record the position in the zip file of the zip entry data (as opposed to the metadata).
                // s.Position may fail on some write-only streams, eg stdout or
                // System.Web.HttpResponseStream.
                // We swallow that exception, because we don't care, in that case.
                // But, don't set __FileDataPosition directly.  It may be needed to READ
                // the zip entry from the zip file, if this is a "re-stream" situation. In other words
                // if the zip entry has changed compression level, or compression method, or
                // (maybe?) encryption algorithm.
                // In that case if the original entry is encrypted, we need __FileDataPosition to be
                // the value for the input zip file.  This s.Position is for the output zipfile.
                // So we copy fdp to __FileDataPosition after this entry has been (maybe) restreamed.
                fdp = s.Position;
            }
            catch { }

            try
            {
                // Use fileLength for progress updates, and to decide whether
                // we can skip encryption and deflation altogether (in case of length==zero)
                long fileLength = SetInputAndFigureFileLength(ref input);

                CountingStream entryCounter;  // counts bytes written for this entry
                Stream encryptor;
                Stream deflater;
                Ionic.Zlib.CrcCalculatorStream output;
                PrepOutputStream(s, fileLength, out entryCounter, out encryptor, out deflater, out output);

                // as we emit the file, the flow is:
                // calc-crc -> deflate -> encrypt -> count -> actually write

                if (this._Source == ZipEntrySource.WriteDelegate)
                {
                    // allow the application to write the data
                    this._WriteDelegate(this.FileName, output);
                }
                else
                {
                    // synchronously copy the input stream to the output stream-chain
                    byte[] buffer = new byte[BufferSize];
                    int n;
                    while ((n = SharedUtilities.ReadWithRetry(input, buffer, 0, buffer.Length, FileName)) != 0)
                    {
                        output.Write(buffer, 0, n);
                        OnWriteBlock(output.TotalBytesSlurped, fileLength);
                        if (_ioOperationCanceled)
                            break;
                    }
                }

                FinishOutputStream(s, entryCounter, encryptor, deflater, output);
            }
            finally
            {
                if (this._Source == ZipEntrySource.JitStream)
                {
                    // allow the application to open the stream
                    if (this._CloseDelegate != null)
                        this._CloseDelegate(this.FileName, input);
                }
                else if ((input as FileStream) != null)
                {
                    input.Close();
#if !NETCF
                    input.Dispose();
#endif
                }
            }

            if (_ioOperationCanceled)
                return;

            // set FDP now, to allow for re-streaming
            this.__FileDataPosition = fdp;
            PostProcessOutput(s);
        }


        /// <summary>
        /// Set the input stream and get its length, if possible.  The
        /// length is used for progress updates, AND, to allow an
        /// optimization in case of a stream/file of zero length. In
        /// that case we skip the Encrypt and DeflateStream.
        /// </summary>
        private long SetInputAndFigureFileLength(ref Stream input)
        {
            long fileLength = -1L;
            // get the original stream:
            if (this._Source == ZipEntrySource.Stream)
            {
                PrepSourceStream();
                input = this._sourceStream;

                // Try to get the length, no big deal if not available.
                try { fileLength = this._sourceStream.Length; }
                catch (NotSupportedException) { }
            }
            else if (this._Source == ZipEntrySource.ZipFile)
            {
                // we are "re-streaming" the zip entry.
                string pwd = (_Encryption_FromZipFile == EncryptionAlgorithm.None) ? null : (this._Password ?? this._container.Password);
                this._sourceStream = InternalOpenReader(pwd);
                PrepSourceStream();
                input = this._sourceStream;
                fileLength = this._sourceStream.Length;
            }
            else if (this._Source == ZipEntrySource.JitStream)
            {
                // allow the application to open the stream
                if (this._sourceStream == null) _sourceStream = this._OpenDelegate(this.FileName);
                PrepSourceStream();
                input = this._sourceStream;
                try { fileLength = this._sourceStream.Length; }
                catch (NotSupportedException) { }
            }
            else if (this._Source == ZipEntrySource.FileSystem)
            {
                // workitem 7145
                FileShare fs = FileShare.ReadWrite;
#if !NETCF
                // FileShare.Delete is not defined for the Compact Framework
                fs |= FileShare.Delete;
#endif
                // workitem 8423
                input = File.Open(LocalFileName, FileMode.Open, FileAccess.Read, fs);
                fileLength = input.Length;
            }

            return fileLength;
        }



        internal void FinishOutputStream(Stream s,
                                         CountingStream entryCounter,
                                         Stream encryptor,
                                         Stream deflater,
                                         Ionic.Zlib.CrcCalculatorStream output)
        {
            if (output == null) return;

            output.Close();

            // by calling Close() on the deflate stream, we write the footer bytes, as necessary.
            if ((deflater as Ionic.Zlib.DeflateStream) != null)
                deflater.Close();
#if !NETCF
            else if ((deflater as Ionic.Zlib.ParallelDeflateOutputStream) != null)
                deflater.Close();
#endif

            encryptor.Flush();
            encryptor.Close();

            _LengthOfTrailer = 0;

            _UncompressedSize = output.TotalBytesSlurped;

#if AESCRYPTO
            WinZipAesCipherStream wzacs = encryptor as WinZipAesCipherStream;
            if (wzacs != null && _UncompressedSize > 0)
            {
                s.Write(wzacs.FinalAuthentication, 0, 10);
                _LengthOfTrailer += 10;
            }
#endif
            _CompressedFileDataSize = entryCounter.BytesWritten;
            _CompressedSize = _CompressedFileDataSize;   // may be adjusted
            _Crc32 = output.Crc;

            // Set _RelativeOffsetOfLocalHeader now, to allow for re-streaming
            StoreRelativeOffset();
        }




        internal void PostProcessOutput(Stream s)
        {
            // workitem 8931 - for WriteDelegate.
            // The WriteDelegate changes things because there can be a zero-byte stream
            // written. In all other cases DotNetZip knows the length of the stream
            // before compressing and encrypting. In this case we have to circle back,
            // and omit all the crypto stuff - the GP bitfield, and the crypto header.
            if (_UncompressedSize == 0 && _CompressedSize == 0)
            {
                if (this._Source == ZipEntrySource.ZipOutputStream) return;  // nothing to do...

                if (_Password != null)
                {
                    int headerBytesToRetract = 0;
                    if (Encryption == EncryptionAlgorithm.PkzipWeak)
                        headerBytesToRetract = 12;
#if AESCRYPTO
                    else if (Encryption == EncryptionAlgorithm.WinZipAes128 ||
                             Encryption == EncryptionAlgorithm.WinZipAes256)
                    {
                        headerBytesToRetract = _aesCrypto_forWrite._Salt.Length + _aesCrypto_forWrite.GeneratedPV.Length;
                    }
#endif
                    if (this._Source == ZipEntrySource.ZipOutputStream && !s.CanSeek)
                        throw new ZipException("Zero bytes written, encryption in use, and non-seekable output.");

                    if (Encryption != EncryptionAlgorithm.None)
                    {
                        // seek back in the stream to un-output the security metadata
                        s.Seek(-1 * headerBytesToRetract, SeekOrigin.Current);
                        s.SetLength(s.Position);
                        // workitem 10178
                        Ionic.Zip.SharedUtilities.Workaround_Ladybug318918(s);

                        // subtract the size of the security header from the _LengthOfHeader
                        _LengthOfHeader -= headerBytesToRetract;
                    }
                    _Password = null;

                    // turn off the encryption bit
                    _BitField &= ~(0x0001);

                    int j = 6;
                    _EntryHeader[j++] = (byte)(_BitField & 0x00FF);
                    _EntryHeader[j++] = (byte)((_BitField & 0xFF00) >> 8);
                }

                CompressionMethod = 0;
                Encryption = EncryptionAlgorithm.None;
            }
            else if (_zipCrypto_forWrite != null
#if AESCRYPTO
                     || _aesCrypto_forWrite != null
#endif
                     )

            {
                if (Encryption == EncryptionAlgorithm.PkzipWeak)
                {
                    _CompressedSize += 12; // 12 extra bytes for the encryption header
                }
#if AESCRYPTO
                else if (Encryption == EncryptionAlgorithm.WinZipAes128 ||
                         Encryption == EncryptionAlgorithm.WinZipAes256)
                {
                    // adjust the compressed size to include the variable (salt+pv)
                    // security header and 10-byte trailer. According to the winzip AES
                    // spec, that metadata is included in the "Compressed Size" figure
                    // when encoding the zip archive.
                    _CompressedSize += _aesCrypto_forWrite.SizeOfEncryptionMetadata;
                }
#endif
            }

            int i = 8;
            _EntryHeader[i++] = (byte)(_CompressionMethod & 0x00FF);
            _EntryHeader[i++] = (byte)((_CompressionMethod & 0xFF00) >> 8);

            i = 14;
            // CRC - the correct value now
            _EntryHeader[i++] = (byte)(_Crc32 & 0x000000FF);
            _EntryHeader[i++] = (byte)((_Crc32 & 0x0000FF00) >> 8);
            _EntryHeader[i++] = (byte)((_Crc32 & 0x00FF0000) >> 16);
            _EntryHeader[i++] = (byte)((_Crc32 & 0xFF000000) >> 24);

            SetZip64Flags();

            // (i==26) filename length (Int16)
            Int16 filenameLength = (short)(_EntryHeader[26] + _EntryHeader[27] * 256);
            Int16 extraFieldLength = (short)(_EntryHeader[28] + _EntryHeader[29] * 256);

            if (_OutputUsesZip64.Value)
            {
                // VersionNeededToExtract - set to 45 to indicate zip64
                _EntryHeader[4] = (byte)(45 & 0x00FF);
                _EntryHeader[5] = 0x00;

                // workitem 7924 - don't need bit 3
                // // workitem 7917
                // // set bit 3 for ZIP64 compatibility with WinZip12
                // _BitField |= 0x0008;
                // _EntryHeader[6] = (byte)(_BitField & 0x00FF);

                // CompressedSize and UncompressedSize - 0xFF
                for (int j = 0; j < 8; j++)
                    _EntryHeader[i++] = 0xff;

                // At this point we need to find the "Extra field" that
                // follows the filename.  We had already emitted it, but
                // the data (uncomp, comp, Relative Offset of Local
                // Header) was not available at the time we did so.
                // Here, we emit it again, with final values.

                i = 30 + filenameLength;
                _EntryHeader[i++] = 0x01;  // zip64
                _EntryHeader[i++] = 0x00;

                i += 2; // skip over data size, which is 16+4

                Array.Copy(BitConverter.GetBytes(_UncompressedSize), 0, _EntryHeader, i, 8);
                i += 8;
                Array.Copy(BitConverter.GetBytes(_CompressedSize), 0, _EntryHeader, i, 8);
            }
            else
            {
                // VersionNeededToExtract - reset to 20 since no zip64
                _EntryHeader[4] = (byte)(20 & 0x00FF);
                _EntryHeader[5] = 0x00;

                // CompressedSize - the correct value now
                i = 18;
                _EntryHeader[i++] = (byte)(_CompressedSize & 0x000000FF);
                _EntryHeader[i++] = (byte)((_CompressedSize & 0x0000FF00) >> 8);
                _EntryHeader[i++] = (byte)((_CompressedSize & 0x00FF0000) >> 16);
                _EntryHeader[i++] = (byte)((_CompressedSize & 0xFF000000) >> 24);

                // UncompressedSize - the correct value now
                _EntryHeader[i++] = (byte)(_UncompressedSize & 0x000000FF);
                _EntryHeader[i++] = (byte)((_UncompressedSize & 0x0000FF00) >> 8);
                _EntryHeader[i++] = (byte)((_UncompressedSize & 0x00FF0000) >> 16);
                _EntryHeader[i++] = (byte)((_UncompressedSize & 0xFF000000) >> 24);

                // The HeaderId in the extra field header, is already dummied out.
                if (extraFieldLength != 0)
                {
                    i = 30 + filenameLength;
                    // For zip archives written by this library, if the zip64 header exists,
                    // it is the first header. Because of the logic used when first writing the
                    // _EntryHeader bytes, the HeaderId is not guaranteed to be any
                    // particular value.  So we determine if the first header is a putative zip64
                    // header by examining the datasize.
                    //UInt16 HeaderId = (UInt16)(_EntryHeader[i] + _EntryHeader[i + 1] * 256);
                    Int16 DataSize = (short)(_EntryHeader[i + 2] + _EntryHeader[i + 3] * 256);
                    if (DataSize == 16)
                    {
                        // reset to Header Id to dummy value, effectively dummy-ing out the zip64 metadata
                        _EntryHeader[i++] = 0x99;
                        _EntryHeader[i++] = 0x99;
                    }
                }
            }


#if AESCRYPTO

            if (Encryption == EncryptionAlgorithm.WinZipAes128 ||
                Encryption == EncryptionAlgorithm.WinZipAes256)
            {
                // Must set compressionmethod to 0x0063 (decimal 99)
                // and then set the compression method bytes inside the extra field to the actual
                // compression method value.

                i = 8;
                _EntryHeader[i++] = 0x63;
                _EntryHeader[i++] = 0;

                i = 30 + filenameLength;
                do
                {
                    UInt16 HeaderId = (UInt16)(_EntryHeader[i] + _EntryHeader[i + 1] * 256);
                    Int16 DataSize = (short)(_EntryHeader[i + 2] + _EntryHeader[i + 3] * 256);
                    if (HeaderId != 0x9901)
                    {
                        // skip this header
                        i += DataSize + 4;
                    }
                    else
                    {
                        i += 9;
                        // actual compression method
                        _EntryHeader[i++] = (byte)(_CompressionMethod & 0x00FF);
                        _EntryHeader[i++] = (byte)(_CompressionMethod & 0xFF00);
                    }
                } while (i < (extraFieldLength - 30 - filenameLength));
            }
#endif

            // finally, write the data.

            // workitem 7216 - sometimes we don't seek even if we CAN.  ASP.NET
            // Response.OutputStream, or stdout are non-seekable.  But we may also want
            // to NOT seek in other cases, eg zip64.  For all cases, we just check bit 3
            // to see if we want to seek.  There's one exception - if using a
            // ZipOutputStream, and PKZip encryption is in use, then we set bit 3 even
            // if the out is seekable. This is so the check on the last byte of the
            // PKZip Encryption Header can be done on the current time, as opposed to
            // the CRC, to prevent streaming the file twice.  So, test for
            // ZipOutputStream and seekable, and if so, seek back, even if bit 3 is set.

            if ((_BitField & 0x0008) != 0x0008 ||
                 (this._Source == ZipEntrySource.ZipOutputStream && s.CanSeek))
            {
                // seek back and rewrite the entry header
                var zss = s as ZipSegmentedStream;
                if (zss != null && _diskNumber != zss.CurrentSegment)
                {
                    // in this case the entry header is in a different file
                    using (Stream firstSeg = ZipSegmentedStream.ForUpdate(this._container.ZipFile.Name, _diskNumber))
                    {
                        firstSeg.Seek(this._RelativeOffsetOfLocalHeader, SeekOrigin.Begin);
                        // write the updated header to the output stream
                        firstSeg.Write(_EntryHeader, 0, _EntryHeader.Length);
                    }
                }
                else
                {
                    // seek in the raw output stream, to the beginning of the header for
                    // this entry.
                    // workitem 8098: ok (output)
                    s.Seek(this._RelativeOffsetOfLocalHeader, SeekOrigin.Begin);

                    // write the updated header to the output stream
                    s.Write(_EntryHeader, 0, _EntryHeader.Length);

                    // adjust the count on the CountingStream as necessary
                    var s1 = s as CountingStream;
                    if (s1 != null) s1.Adjust(_EntryHeader.Length);

                    // seek in the raw output stream, to the end of the file data for this entry
                    s.Seek(_CompressedSize, SeekOrigin.Current);
                }
            }

            // emit the descriptor - only if not a directory.
            if (((_BitField & 0x0008) == 0x0008) && !IsDirectory)
            {
                byte[] Descriptor = new byte[16 + (_OutputUsesZip64.Value ? 8 : 0)];
                i = 0;

                // signature
                Array.Copy(BitConverter.GetBytes(ZipConstants.ZipEntryDataDescriptorSignature), 0, Descriptor, i, 4);
                i += 4;

                // CRC - the correct value now
                Array.Copy(BitConverter.GetBytes(_Crc32), 0, Descriptor, i, 4);
                i += 4;

                // workitem 7917
                if (_OutputUsesZip64.Value)
                {
                    // CompressedSize - the correct value now
                    Array.Copy(BitConverter.GetBytes(_CompressedSize), 0, Descriptor, i, 8);
                    i += 8;

                    // UncompressedSize - the correct value now
                    Array.Copy(BitConverter.GetBytes(_UncompressedSize), 0, Descriptor, i, 8);
                    i += 8;
                }
                else
                {
                    // CompressedSize - (lower 32 bits) the correct value now
                    Descriptor[i++] = (byte)(_CompressedSize & 0x000000FF);
                    Descriptor[i++] = (byte)((_CompressedSize & 0x0000FF00) >> 8);
                    Descriptor[i++] = (byte)((_CompressedSize & 0x00FF0000) >> 16);
                    Descriptor[i++] = (byte)((_CompressedSize & 0xFF000000) >> 24);

                    // UncompressedSize - (lower 32 bits) the correct value now
                    Descriptor[i++] = (byte)(_UncompressedSize & 0x000000FF);
                    Descriptor[i++] = (byte)((_UncompressedSize & 0x0000FF00) >> 8);
                    Descriptor[i++] = (byte)((_UncompressedSize & 0x00FF0000) >> 16);
                    Descriptor[i++] = (byte)((_UncompressedSize & 0xFF000000) >> 24);
                }

                // finally, write the trailing descriptor to the output stream
                s.Write(Descriptor, 0, Descriptor.Length);

                _LengthOfTrailer += Descriptor.Length;
            }
        }



        private void SetZip64Flags()
        {
            // zip64 housekeeping
            _entryRequiresZip64 = new Nullable<bool>
                (_CompressedSize >= 0xFFFFFFFF || _UncompressedSize >= 0xFFFFFFFF || _RelativeOffsetOfLocalHeader >= 0xFFFFFFFF);

            // validate the ZIP64 usage
            if (_container.Zip64 == Zip64Option.Never && _entryRequiresZip64.Value)
                throw new ZipException("Compressed or Uncompressed size, or offset exceeds the maximum value. Consider setting the UseZip64WhenSaving property on the ZipFile instance.");

            _OutputUsesZip64 = new Nullable<bool>(_container.Zip64 == Zip64Option.Always || _entryRequiresZip64.Value);
        }



        internal void PrepOutputStream(Stream s,
                                       long streamLength,
                                       out CountingStream outputCounter,
                                       out Stream encryptor,
                                       out Stream deflater,
                                       out Ionic.Zlib.CrcCalculatorStream output)
        {
            TraceWriteLine("PrepOutputStream: e({0}) comp({1}) crypto({2}) zf({3})", FileName, CompressionLevel, Encryption, (_container).Name);

            // Wrap a counting stream around the raw output stream:
            // This is the last thing that happens before the bits go to the
            // application-provided stream.
            outputCounter = new CountingStream(s);

            // Sometimes the incoming "raw" output stream is already a CountingStream.
            // Doesn't matter. Wrap it with a counter anyway. We need to count at both levels.

            if (streamLength != 0L)
            {
                // Maybe wrap an encrypting stream around that:
                // This will happen BEFORE output counting, and AFTER deflation, if encryption
                // is used.
                encryptor = MaybeApplyEncryption(outputCounter);

                // Maybe wrap a DeflateStream around that.
                // This will happen BEFORE encryption (if any) as we write data out.
                deflater = MaybeApplyDeflation(encryptor, streamLength);
            }
            else
            {
                encryptor = deflater = outputCounter;
            }
            // Wrap a CrcCalculatorStream around that.
            // This will happen BEFORE deflation (if any) as we write data out.
            output = new Ionic.Zlib.CrcCalculatorStream(deflater, true);
        }



        private Stream MaybeApplyDeflation(Stream s, long streamLength)
        {
            if (_CompressionMethod == 0x08 && CompressionLevel != Ionic.Zlib.CompressionLevel.None)
            {
#if !NETCF
                // ParallelDeflateThreshold == 0    means ALWAYS use parallel deflate
                // ParallelDeflateThreshold == -1L  means NEVER use parallel deflate
                // Other values specify the
                if (_container.ParallelDeflateThreshold == 0L ||
                    (streamLength > _container.ParallelDeflateThreshold &&
                     _container.ParallelDeflateThreshold > 0L))
                {
                    // This is sort of hacky.
                    //
                    // It's expensive to create a ParallelDeflateOutputStream, because
                    // of the large memory buffers.  But the class is unlike most Stream
                    // classes in that it can be re-used, so the caller can compress
                    // multiple files with it, one file at a time.  The key is to call
                    // Reset() on it, in between uses.
                    //
                    // The ParallelDeflateOutputStream is attached to the container
                    // itself - there is just one for the entire ZipFile or
                    // ZipOutputStream. So it gets created once, per save, and then
                    // re-used many times.
                    //
                    // This approach will break when we go to a "paral1lel save"
                    // approach, where multiple entries within the zip file are being
                    // compressed and saved at the same time.  But for now it's ok.
                    //

                    // instantiate the ParallelDeflateOutputStream
                    if (_container.ParallelDeflater == null)
                    {
                        _container.ParallelDeflater =
                            new Ionic.Zlib.ParallelDeflateOutputStream(s,
                                                                       CompressionLevel,
                                                                       _container.Strategy,
                                                                       true);
                        // can set the codec buffer size only before the first call to Write().
                        if (_container.CodecBufferSize > 0)
                            _container.ParallelDeflater.BufferSize = _container.CodecBufferSize;
                    }
                    // reset it with the new stream
                    Ionic.Zlib.ParallelDeflateOutputStream o1 = _container.ParallelDeflater;
                    o1.Reset(s);
                    return o1;
                }
#endif
                var o = new Ionic.Zlib.DeflateStream(s, Ionic.Zlib.CompressionMode.Compress,
                                                     CompressionLevel,
                                                     true);
                if (_container.CodecBufferSize > 0)
                    o.BufferSize = _container.CodecBufferSize;
                o.Strategy = _container.Strategy;
                return o;
            }

            return s;
        }



        private Stream MaybeApplyEncryption(Stream s)
        {
            if (Encryption == EncryptionAlgorithm.PkzipWeak)
            {
                TraceWriteLine("MaybeApplyEncryption: e({0}) PKZIP", FileName);

                return new ZipCipherStream(s, _zipCrypto_forWrite, CryptoMode.Encrypt);
            }
#if AESCRYPTO
            if (Encryption == EncryptionAlgorithm.WinZipAes128 ||
                     Encryption == EncryptionAlgorithm.WinZipAes256)
            {
                TraceWriteLine("MaybeApplyEncryption: e({0}) AES", FileName);

                return new WinZipAesCipherStream(s, _aesCrypto_forWrite, CryptoMode.Encrypt);
            }
#endif
            TraceWriteLine("MaybeApplyEncryption: e({0}) None", FileName);

            return s;
        }



        private void OnZipErrorWhileSaving(Exception e)
        {
            if (_container.ZipFile != null)
                _ioOperationCanceled = _container.ZipFile.OnZipErrorSaving(this, e);
        }



        internal void Write(Stream s)
        {
            bool done = false;
            do
            {
                // In some cases the source for the zip entry data is a zip file
                // (the app is updating a zip file).  In some of those cases, some
                // of the zip entries may be modified.  Changes to the FileName,
                // CompressionMethod CompressionLevel, and so on.  Some of these
                // changes require a "re-stream" - the old entry data must be
                // maybe decrypted, maybe decompressed, then maybe re-compressed
                // and maybe re-encrypted. This is true for changes in
                // CompressionMethod or CompressionLevel. Some changes though,
                // require an update only to metadata.  A change in the entry
                // name, or a new comment are examples of the latter.  In some
                // cases, the entry hasn't changed at all and can be simply copied
                // as a block.

                // This test checks if the source for the entry data is a zip file, and
                // if a restream is necessary.  If NOT, then it just copies through
                // one entry, potentially changing the metadata.

                if (_Source == ZipEntrySource.ZipFile && !_restreamRequiredOnSave)
                {
                    CopyThroughOneEntry(s);
                    return;
                }

                // Ok, the source for this entry is not a previously created zip file, or
                // the settings whave changed in important ways and therefore we will need to
                // process the bytestream (compute crc, maybe compress, maybe encrypt) in
                // order to create the zip.
                //
                // We do this in potentially 2 passes: The first time we do it as requested, maybe
                // with compression and maybe encryption.  If that causes the bytestream to inflate
                // in size, and if compression was on, then we turn off compression and do it again.

                try
                {
                    if (IsDirectory)
                    {
                        WriteHeader(s, 1);
                        // nothing more to write
                        StoreRelativeOffset();
                        _entryRequiresZip64 = new Nullable<bool>(_RelativeOffsetOfLocalHeader >= 0xFFFFFFFF);
                        _OutputUsesZip64 = new Nullable<bool>(_container.Zip64 == Zip64Option.Always || _entryRequiresZip64.Value);
                        // handle case for split archives
                        var zss = s as ZipSegmentedStream;
                        if (zss != null)
                            _diskNumber = zss.CurrentSegment;

                        return;
                    }


                    bool readAgain = true;
                    int nCycles = 0;
                    do
                    {
                        nCycles++;

                        WriteHeader(s, nCycles);

                        // now, write the actual file data. (incl the encrypted header)
                        _EmitOne(s);

                        // The file data has now been written to the stream, and
                        // the file pointer is positioned directly after file data.

                        if (nCycles > 1) readAgain = false;
                        else if (!s.CanSeek) readAgain = false;
                        else readAgain = WantReadAgain();

                        if (readAgain)
                        {
                            // Seek back in the raw output stream, to the beginning of the file
                            // data for this entry.

                            // handle case for split archives
                            var zss = s as ZipSegmentedStream;
                            if (zss != null)
                            {
                                // Console.WriteLine("***_diskNumber/first: {0}", _diskNumber);
                                // Console.WriteLine("***_diskNumber/current: {0}", zss.CurrentSegment);
                                zss.TruncateBackward(_diskNumber, _RelativeOffsetOfLocalHeader);
                            }
                            else
                                // workitem 8098: ok (output).
                                s.Seek(_RelativeOffsetOfLocalHeader, SeekOrigin.Begin);

                            // If the last entry expands, we read again; but here, we must
                            // truncate the stream to prevent garbage data after the
                            // end-of-central-directory.

                            // workitem 8098: ok (output).
                            s.SetLength(s.Position);

                            // Adjust the count on the CountingStream as necessary.
                            var s1 = s as CountingStream;
                            if (s1 != null) s1.Adjust(_TotalEntrySize);
                        }
                    }
                    while (readAgain);
                    _skippedDuringSave = false;
                    done = true;
                }
                catch (System.Exception exc1)
                {
                    ZipErrorAction orig = this.ZipErrorAction;
                    int loop = 0;
                    do
                    {
                        if (ZipErrorAction == ZipErrorAction.Throw)
                            throw;

                        if (ZipErrorAction == ZipErrorAction.Skip ||
                            ZipErrorAction == ZipErrorAction.Retry)
                        {
                            // must reset file pointer here.
                            if (!s.CanSeek) throw;
                            long p1 = s.Position;
                            s.Seek(_future_ROLH, SeekOrigin.Begin);
                            long p2 = s.Position;
                            s.SetLength(s.Position);  // to prevent garbage if this is the last entry
                            var s1 = s as CountingStream;
                            if (s1 != null) s1.Adjust(p1 - p2);
                            if (ZipErrorAction == ZipErrorAction.Skip)
                            {
                                WriteStatus("Skipping file {0} (exception: {1})", LocalFileName, exc1.ToString());

                                _skippedDuringSave = true;
                                done = true;
                            }
                            else
                                this.ZipErrorAction = orig;
                            break;
                        }

                        if (loop > 0) throw;

                        if (ZipErrorAction == ZipErrorAction.InvokeErrorEvent)
                        {
                            OnZipErrorWhileSaving(exc1);
                            if (_ioOperationCanceled)
                            {
                                done = true;
                                break;
                            }
                        }
                        loop++;
                    }
                    while (true);
                }
            }
            while (!done);
        }


        internal void StoreRelativeOffset()
        {
            _RelativeOffsetOfLocalHeader = _future_ROLH;
        }



        internal void NotifySaveComplete()
        {
            // When updating a zip file, there are two contexts for properties
            // like Encryption or CompressionMethod - the values read from the
            // original zip file, and the values used in the updated zip file.
            // The _FromZipFile versions are the originals.  At the end of a save,
            // these values are the same.  So we need to update them.  This takes
            // care of the boundary case where a single zipfile instance can be
            // saved multiple times, with distinct changes to the properties on
            // the entries, in between each Save(). Obviously an edge case, but
            // it's good to take care of it.
            _Encryption_FromZipFile = _Encryption;
            _CompressionMethod_FromZipFile = _CompressionMethod;
            _restreamRequiredOnSave = false;
            _metadataChanged = false;
            _Source = ZipEntrySource.None;
        }

        private void _EmitOne(Stream outstream)
        {
            WriteSecurityMetadata(outstream);

            // write the (potentially compressed, potentially encrypted) file data
            _WriteEntryData(outstream);

            // track total entry size (including the trailing descriptor and MAC)
            _TotalEntrySize = _LengthOfHeader + _CompressedFileDataSize + _LengthOfTrailer;
        }



        internal void WriteSecurityMetadata(Stream outstream)
        {
            string pwd = this._Password;

            // special handling for source == ZipFile.
            // Want to support the case where we re-stream an encrypted entry. This will involve,
            // at runtime, reading, decrypting, and decompressing from the original zip file, then
            // compressing, encrypting, and writing to the output zip file.

            // If that's what we're doing, and the password hasn't been set on the entry,
            // we use the container (ZipFile/ZipOutputStream) password to decrypt.
            // This test here says to use the container password to re-encrypt, as well,
            // with that password, if the entry password is null.

            if (this._Source == ZipEntrySource.ZipFile && pwd == null)
                pwd = this._container.Password;

            if (pwd == null)
            {
                _zipCrypto_forWrite = null;
#if AESCRYPTO
                _aesCrypto_forWrite = null;
#endif
                return;
            }

            TraceWriteLine("WriteSecurityMetadata: e({0}) crypto({1}) pw({2})",
                           FileName, Encryption.ToString(), pwd);

            if (Encryption == EncryptionAlgorithm.PkzipWeak)
            {
                // If PKZip (weak) encryption is in use, then the encrypted entry data
                // is preceded by 12-byte "encryption header" for the entry.

                _zipCrypto_forWrite = ZipCrypto.ForWrite(pwd);

                // generate the random 12-byte header:
                var rnd = new System.Random();
                byte[] encryptionHeader = new byte[12];
                rnd.NextBytes(encryptionHeader);

                // workitem 8271
                if ((this._BitField & 0x0008) == 0x0008)
                {
                    // In the case that bit 3 of the general purpose bit flag is set to
                    // indicate the presence of a 'data descriptor' (signature
                    // 0x08074b50), the last byte of the decrypted header is sometimes
                    // compared with the high-order byte of the lastmodified time,
                    // rather than the high-order byte of the CRC, to verify the
                    // password.
                    //
                    // This is not documented in the PKWare Appnote.txt.
                    // This was discovered this by analysis of the Crypt.c source file in the
                    // InfoZip library
                    // http://www.info-zip.org/pub/infozip/

                    // Also, winzip insists on this!
                    _TimeBlob = Ionic.Zip.SharedUtilities.DateTimeToPacked(LastModified);
                    encryptionHeader[11] = (byte)((this._TimeBlob >> 8) & 0xff);
                }
                else
                {
                    // When bit 3 is not set, the CRC value is required before
                    // encryption of the file data begins. In this case there is no way
                    // around it: must read the stream in its entirety to compute the
                    // actual CRC before proceeding.
                    FigureCrc32();
                    encryptionHeader[11] = (byte)((this._Crc32 >> 24) & 0xff);
                }

                // Encrypt the random header, INCLUDING the final byte which is either
                // the high-order byte of the CRC32, or the high-order byte of the
                // _TimeBlob.  Must do this BEFORE encrypting the file data.  This
                // step changes the state of the cipher, or in the words of the PKZIP
                // spec, it "further initializes" the cipher keys.

                byte[] cipherText = _zipCrypto_forWrite.EncryptMessage(encryptionHeader, encryptionHeader.Length);

                // Write the ciphered bonafide encryption header.
                outstream.Write(cipherText, 0, cipherText.Length);
                _LengthOfHeader += cipherText.Length;  // 12 bytes
            }

#if AESCRYPTO
            else if (Encryption == EncryptionAlgorithm.WinZipAes128 ||
                Encryption == EncryptionAlgorithm.WinZipAes256)
            {
                // If WinZip AES encryption is in use, then the encrypted entry data is
                // preceded by a variable-sized Salt and a 2-byte "password
                // verification" value for the entry.

                int keystrength = GetKeyStrengthInBits(Encryption);
                _aesCrypto_forWrite = WinZipAesCrypto.Generate(pwd, keystrength);
                outstream.Write(_aesCrypto_forWrite.Salt, 0, _aesCrypto_forWrite._Salt.Length);
                outstream.Write(_aesCrypto_forWrite.GeneratedPV, 0, _aesCrypto_forWrite.GeneratedPV.Length);
                _LengthOfHeader += _aesCrypto_forWrite._Salt.Length + _aesCrypto_forWrite.GeneratedPV.Length;

                TraceWriteLine("WriteSecurityMetadata: AES e({0}) keybits({1}) _LOH({2})",
                               FileName, keystrength, _LengthOfHeader);

            }
#endif

        }



        private void CopyThroughOneEntry(Stream outstream)
        {
            // Just read the entry from the existing input zipfile and write to the output.
            // But, if metadata has changed (like file times or attributes), or if the ZIP64
            // option has changed, we can re-stream the entry data but must recompute the
            // metadata.
            if (this.LengthOfHeader == 0)
                throw new BadStateException("Bad header length.");

            // is it necessaty to re-constitute new metadata for this entry?
            bool needRecompute = _metadataChanged ||
                (_InputUsesZip64 && _container.UseZip64WhenSaving == Zip64Option.Never) ||
                (!_InputUsesZip64 && _container.UseZip64WhenSaving == Zip64Option.Always);

            if (needRecompute)
                CopyThroughWithRecompute(outstream);
            else
                CopyThroughWithNoChange(outstream);

            // zip64 housekeeping
            _entryRequiresZip64 = new Nullable<bool>
                (_CompressedSize >= 0xFFFFFFFF || _UncompressedSize >= 0xFFFFFFFF ||
                _RelativeOffsetOfLocalHeader >= 0xFFFFFFFF
                );

            _OutputUsesZip64 = new Nullable<bool>(_container.Zip64 == Zip64Option.Always || _entryRequiresZip64.Value);
        }



        private void CopyThroughWithRecompute(Stream outstream)
        {
            int n;
            byte[] bytes = new byte[BufferSize];
            var input = new CountingStream(this.ArchiveStream);

            long origRelativeOffsetOfHeader = _RelativeOffsetOfLocalHeader;

            // The header length may change due to rename of file, add a comment, etc.
            // We need to retain the original.
            int origLengthOfHeader = LengthOfHeader; // including crypto bytes!

            // WriteHeader() has the side effect of changing _RelativeOffsetOfLocalHeader
            // and setting _LengthOfHeader.  While ReadHeader() reads the crypto header if
            // present, WriteHeader() does not write the crypto header.
            WriteHeader(outstream, 0);
            StoreRelativeOffset();

            if (!this.FileName.EndsWith("/"))
            {
                // Not a directory; there is file data.
                // Seek to the beginning of the entry data in the input stream.

                long pos = origRelativeOffsetOfHeader + origLengthOfHeader;
                int len = GetLengthOfCryptoHeaderBytes(_Encryption_FromZipFile);
                pos -= len; // want to keep the crypto header
                _LengthOfHeader += len;

                input.Seek(pos, SeekOrigin.Begin);

                // copy through everything after the header to the output stream
                long remaining = this._CompressedSize;

                while (remaining > 0)
                {
                    len = (remaining > bytes.Length) ? bytes.Length : (int)remaining;

                    // read
                    n = input.Read(bytes, 0, len);
                    //_CheckRead(n);

                    // write
                    outstream.Write(bytes, 0, n);
                    remaining -= n;
                    OnWriteBlock(input.BytesRead, this._CompressedSize);
                    if (_ioOperationCanceled)
                        break;
                }

                // bit 3 descriptor
                if ((this._BitField & 0x0008) == 0x0008)
                {
                    int size = 16;
                    if (_InputUsesZip64) size += 8;
                    byte[] Descriptor = new byte[size];
                    input.Read(Descriptor, 0, size);

                    if (_InputUsesZip64 && _container.UseZip64WhenSaving == Zip64Option.Never)
                    {
                        // original descriptor was 24 bytes, now we need 16.
                        // Must check for underflow here.
                        // signature + CRC.
                        outstream.Write(Descriptor, 0, 8);

                        // Compressed
                        if (_CompressedSize > 0xFFFFFFFF)
                            throw new InvalidOperationException("ZIP64 is required");
                        outstream.Write(Descriptor, 8, 4);

                        // UnCompressed
                        if (_UncompressedSize > 0xFFFFFFFF)
                            throw new InvalidOperationException("ZIP64 is required");
                        outstream.Write(Descriptor, 16, 4);
                        _LengthOfTrailer -= 8;
                    }
                    else if (!_InputUsesZip64 && _container.UseZip64WhenSaving == Zip64Option.Always)
                    {
                        // original descriptor was 16 bytes, now we need 24
                        // signature + CRC
                        byte[] pad = new byte[4];
                        outstream.Write(Descriptor, 0, 8);
                        // Compressed
                        outstream.Write(Descriptor, 8, 4);
                        outstream.Write(pad, 0, 4);
                        // UnCompressed
                        outstream.Write(Descriptor, 12, 4);
                        outstream.Write(pad, 0, 4);
                        _LengthOfTrailer += 8;
                    }
                    else
                    {
                        // same descriptor on input and output. Copy it through.
                        outstream.Write(Descriptor, 0, size);
                        //_LengthOfTrailer += size;
                    }
                }
            }

            _TotalEntrySize = _LengthOfHeader + _CompressedFileDataSize + _LengthOfTrailer;
        }


        private void CopyThroughWithNoChange(Stream outstream)
        {
            int n;
            byte[] bytes = new byte[BufferSize];
            var input = new CountingStream(this.ArchiveStream);

            // seek to the beginning of the entry data in the input stream
            input.Seek(this._RelativeOffsetOfLocalHeader, SeekOrigin.Begin);

            if (this._TotalEntrySize == 0)
            {
                // We've never set the length of the entry.
                // Set it here.
                this._TotalEntrySize = this._LengthOfHeader + this._CompressedFileDataSize + _LengthOfTrailer;

                // The CompressedSize includes all the leading metadata associated
                // to encryption, if any, as well as the compressed data, or
                // compressed-then-encrypted data, and the trailer in case of AES.

                // The CompressedFileData size is the same, less the encryption
                // framing data (12 bytes header for PKZip; 10/18 bytes header and
                // 10 byte trailer for AES).

                // The _LengthOfHeader includes all the zip entry header plus the
                // crypto header, if any.  The _LengthOfTrailer includes the
                // 10-byte MAC for AES, where appropriate, and the bit-3
                // Descriptor, where applicable.
            }


            // workitem 5616
            // remember the offset, within the output stream, of this particular entry header.
            // This may have changed if any of the other entries changed (eg, if a different
            // entry was removed or added.)
            var counter = outstream as CountingStream;
            _RelativeOffsetOfLocalHeader = (counter != null)
                ? counter.ComputedPosition
                : outstream.Position;  // BytesWritten

            // copy through the header, filedata, trailer, everything...
            long remaining = this._TotalEntrySize;
            while (remaining > 0)
            {
                int len = (remaining > bytes.Length) ? bytes.Length : (int)remaining;

                // read
                n = input.Read(bytes, 0, len);
                //_CheckRead(n);

                // write
                outstream.Write(bytes, 0, n);
                remaining -= n;
                OnWriteBlock(input.BytesRead, this._TotalEntrySize);
                if (_ioOperationCanceled)
                    break;
            }
        }




        [System.Diagnostics.ConditionalAttribute("Trace")]
        private void TraceWriteLine(string format, params object[] varParams)
        {
            lock (_outputLock)
            {
                int tid = System.Threading.Thread.CurrentThread.GetHashCode();
#if !NETCF
                Console.ForegroundColor = (ConsoleColor)(tid % 8 + 8);
#endif
                Console.Write("{0:000} ZipEntry.Write ", tid);
                Console.WriteLine(format, varParams);
#if !NETCF
                Console.ResetColor();
#endif
            }
        }

        private object _outputLock = new Object();
    }
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Software Developer TMA Solutions
Vietnam Vietnam
Impossible = I'm possible!

Comments and Discussions