Click here to Skip to main content
15,881,852 members
Articles / General Programming / Threads

Smart Thread Pool

Rate me:
Please Sign up or sign in to vote.
4.96/5 (314 votes)
27 Aug 2012Ms-PL40 min read 2.2M   29.1K   1.1K  
A .NET Thread Pool fully implemented in C# with many features.
using System;
using System.Collections;

/*
 * The code below generates permutations.
 * 
 * The original code was written by Michael Gilleland,
 * and can be found in the following site 
 * http://www.merriampark.com/perm.htm
 * 
 * I translated it to C# from Java.
 */
namespace SmartThreadPoolTests
{
	//--------------------------------------
	// Systematically generate permutations. 
	//--------------------------------------

	public class PermutationGenerator : IEnumerable
	{
		private object [] _objects;

		public PermutationGenerator(object [] objects)
		{
			_objects = (object [])objects.Clone();
		}

		#region IEnumerable Members

		public IEnumerator GetEnumerator()
		{
			return new PermutationGeneratorEnumerator(_objects);
		}

		#endregion

		private class PermutationGeneratorEnumerator : IEnumerator
		{
			private object [] _objects;
			private object [] _currentPermutation;
			private PermutationGeneratorHelper _permutationGeneratorHelper;

			public PermutationGeneratorEnumerator(object [] objects)
			{
				_objects = objects;
				Reset();
			}

			#region IEnumerator Members

			public void Reset()
			{
				_permutationGeneratorHelper = new PermutationGeneratorHelper(_objects.Length);
			}

			public object Current
			{
				get
				{
					return _currentPermutation;
				}
			}

			public bool MoveNext()
			{
				if (_permutationGeneratorHelper.hasMore())
				{
					_currentPermutation = new object[_objects.Length];
					int [] indices = _permutationGeneratorHelper.getNext();
					for (int i = 0; i < indices.Length; i++) 
					{
						_currentPermutation[i] = _objects[indices[i]];
					}
					return true;
				}
				_currentPermutation = null;
				return false;
			}

			#endregion
		}


		private class PermutationGeneratorHelper
		{

			private int[] a;
			private long numLeft;
			private long total;

			//-----------------------------------------------------------
			// Constructor. WARNING: Don't make n too large.
			// Recall that the number of permutations is n!
			// which can be very large, even when n is as small as 20 --
			// 20! = 2,432,902,008,176,640,000 and
			// 21! is too big to fit into a Java long, which is
			// why we use long instead.
			//----------------------------------------------------------

			public PermutationGeneratorHelper (int n) 
			{
				if (n < 1) 
				{
					throw new ArgumentOutOfRangeException("n", n, "Min 1");
				}
				a = new int[n];
				total = getFactorial (n);
				reset();
			}

			//------
			// Reset
			//------

			public void reset () 
			{
				for (int i = 0; i < a.Length; i++) 
				{
					a[i] = i;
				}
				numLeft = total;
			}

			//------------------------------------------------
			// Return number of permutations not yet generated
			//------------------------------------------------

			public long getNumLeft () 
			{
				return numLeft;
			}

			//------------------------------------
			// Return total number of permutations
			//------------------------------------

			public long getTotal () 
			{
				return total;
			}

			//-----------------------------
			// Are there more permutations?
			//-----------------------------

			public bool hasMore () 
			{
				return (numLeft > 0);
			}

			//------------------
			// Compute factorial
			//------------------

			private static long getFactorial (int n) 
			{
				long fact = 1;
				for (int i = n; i > 1; i--) 
				{
					fact = fact * i;
				}
				return fact;
			}

			//--------------------------------------------------------
			// Generate next permutation (algorithm from Rosen p. 284)
			//--------------------------------------------------------

			public int[] getNext () 
			{

				if (numLeft == total) 
				{
					--numLeft;
					return a;
				}

				int temp;

				// Find largest index j with a[j] < a[j+1]

				int j = a.Length - 2;
				while (a[j] > a[j+1]) 
				{
					j--;
				}

				// Find index k such that a[k] is smallest integer
				// greater than a[j] to the right of a[j]

				int k = a.Length - 1;
				while (a[j] > a[k]) 
				{
					k--;
				}

				// Interchange a[j] and a[k]

				temp = a[k];
				a[k] = a[j];
				a[j] = temp;

				// Put tail end of permutation after jth position in increasing order

				int r = a.Length - 1;
				int s = j + 1;

				while (r > s) 
				{
					temp = a[s];
					a[s] = a[r];
					a[r] = temp;
					r--;
					s++;
				}

				--numLeft;
				return a;
			}
		}
	}
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Microsoft Public License (Ms-PL)


Written By
Software Developer (Senior)
Israel Israel
B.Sc. in Computer Science.
Works as Software Developer.

Comments and Discussions