Click here to Skip to main content
15,885,032 members
Articles / Desktop Programming / MFC

Generic Pool: Policy based design

Rate me:
Please Sign up or sign in to vote.
4.64/5 (10 votes)
3 Sep 2004CPOL8 min read 71.9K   1.2K   48  
Generic Pool: Policy based design.
////////////////////////////////////////////////////////////////////////////////
// The Loki Library
// Copyright (c) 2001 by Andrei Alexandrescu
// This code accompanies the book:
// Alexandrescu, Andrei. "Modern C++ Design: Generic Programming and Design 
//     Patterns Applied". Copyright (c) 2001. Addison-Wesley.
// Permission to use, copy, modify, distribute and sell this software for any 
//     purpose is hereby granted without fee, provided that the above copyright 
//     notice appear in all copies and that both that copyright notice and this 
//     permission notice appear in supporting documentation.
// The author or Addison-Welsey Longman make no representations about the 
//     suitability of this software for any purpose. It is provided "as is" 
//     without express or implied warranty.
////////////////////////////////////////////////////////////////////////////////

// Last update: March 20, 2001

#include "SmallObj.h"
#include <cassert>
#include <algorithm>

using namespace Loki;

////////////////////////////////////////////////////////////////////////////////
// FixedAllocator::Chunk::Init
// Initializes a chunk object
////////////////////////////////////////////////////////////////////////////////

void FixedAllocator::Chunk::Init(std::size_t blockSize, unsigned char blocks)
{
    assert(blockSize > 0);
    assert(blocks > 0);
    // Overflow check
    assert((blockSize * blocks) / blockSize == blocks);
    
    pData_ = new unsigned char[blockSize * blocks];
    Reset(blockSize, blocks);
}

////////////////////////////////////////////////////////////////////////////////
// FixedAllocator::Chunk::Reset
// Clears an already allocated chunk
////////////////////////////////////////////////////////////////////////////////

void FixedAllocator::Chunk::Reset(std::size_t blockSize, unsigned char blocks)
{
    assert(blockSize > 0);
    assert(blocks > 0);
    // Overflow check
    assert((blockSize * blocks) / blockSize == blocks);

    firstAvailableBlock_ = 0;
    blocksAvailable_ = blocks;

    unsigned char i = 0;
    unsigned char* p = pData_;
    for (; i != blocks; p += blockSize)
    {
        *p = ++i;
    }
}

////////////////////////////////////////////////////////////////////////////////
// FixedAllocator::Chunk::Release
// Releases the data managed by a chunk
////////////////////////////////////////////////////////////////////////////////

void FixedAllocator::Chunk::Release()
{
    delete[] pData_;
}

////////////////////////////////////////////////////////////////////////////////
// FixedAllocator::Chunk::Allocate
// Allocates a block from a chunk
////////////////////////////////////////////////////////////////////////////////

void* FixedAllocator::Chunk::Allocate(std::size_t blockSize)
{
    if (!blocksAvailable_) return 0;
    
    assert((firstAvailableBlock_ * blockSize) / blockSize == 
        firstAvailableBlock_);

    unsigned char* pResult =
        pData_ + (firstAvailableBlock_ * blockSize);
    firstAvailableBlock_ = *pResult;
    --blocksAvailable_;
    
    return pResult;
}

////////////////////////////////////////////////////////////////////////////////
// FixedAllocator::Chunk::Deallocate
// Dellocates a block from a chunk
////////////////////////////////////////////////////////////////////////////////

void FixedAllocator::Chunk::Deallocate(void* p, std::size_t blockSize)
{
    assert(p >= pData_);

    unsigned char* toRelease = static_cast<unsigned char*>(p);
    // Alignment check
    assert((toRelease - pData_) % blockSize == 0);

    *toRelease = firstAvailableBlock_;
    firstAvailableBlock_ = static_cast<unsigned char>(
        (toRelease - pData_) / blockSize);
    // Truncation check
    assert(firstAvailableBlock_ == (toRelease - pData_) / blockSize);

    ++blocksAvailable_;
}

////////////////////////////////////////////////////////////////////////////////
// FixedAllocator::FixedAllocator
// Creates a FixedAllocator object of a fixed block size
////////////////////////////////////////////////////////////////////////////////

FixedAllocator::FixedAllocator(std::size_t blockSize)
    : blockSize_(blockSize)
    , allocChunk_(0)
    , deallocChunk_(0)
{
    assert(blockSize_ > 0);
    
    prev_ = next_ = this;

    std::size_t numBlocks = DEFAULT_CHUNK_SIZE / blockSize;
    if (numBlocks > UCHAR_MAX) numBlocks = UCHAR_MAX;
    else if (numBlocks == 0) numBlocks = 8 * blockSize;
    
    numBlocks_ = static_cast<unsigned char>(numBlocks);
    assert(numBlocks_ == numBlocks);
}

////////////////////////////////////////////////////////////////////////////////
// FixedAllocator::FixedAllocator(const FixedAllocator&)
// Creates a FixedAllocator object of a fixed block size
////////////////////////////////////////////////////////////////////////////////

FixedAllocator::FixedAllocator(const FixedAllocator& rhs)
    : blockSize_(rhs.blockSize_)
    , numBlocks_(rhs.numBlocks_)
    , chunks_(rhs.chunks_)
{
    prev_ = &rhs;
    next_ = rhs.next_;
    rhs.next_->prev_ = this;
    rhs.next_ = this;
    
    allocChunk_ = rhs.allocChunk_
        ? &chunks_.front() + (rhs.allocChunk_ - &rhs.chunks_.front())
        : 0;

    deallocChunk_ = rhs.deallocChunk_
        ? &chunks_.front() + (rhs.deallocChunk_ - &rhs.chunks_.front())
        : 0;
}

FixedAllocator& FixedAllocator::operator=(const FixedAllocator& rhs)
{
    FixedAllocator copy(rhs);
    copy.Swap(*this);
    return *this;
}

////////////////////////////////////////////////////////////////////////////////
// FixedAllocator::~FixedAllocator
////////////////////////////////////////////////////////////////////////////////

FixedAllocator::~FixedAllocator()
{
    if (prev_ != this)
    {
        prev_->next_ = next_;
        next_->prev_ = prev_;
        return;
    }
    
    assert(prev_ == next_);
    Chunks::iterator i = chunks_.begin();
    for (; i != chunks_.end(); ++i)
    {
       assert(i->blocksAvailable_ == numBlocks_);
       i->Release();
    }
}

////////////////////////////////////////////////////////////////////////////////
// FixedAllocator::Swap
////////////////////////////////////////////////////////////////////////////////

void FixedAllocator::Swap(FixedAllocator& rhs)
{
    using namespace std;
    
    swap(blockSize_, rhs.blockSize_);
    swap(numBlocks_, rhs.numBlocks_);
    chunks_.swap(rhs.chunks_);
    swap(allocChunk_, rhs.allocChunk_);
    swap(deallocChunk_, rhs.deallocChunk_);
}

////////////////////////////////////////////////////////////////////////////////
// FixedAllocator::Allocate
// Allocates a block of fixed size
////////////////////////////////////////////////////////////////////////////////

void* FixedAllocator::Allocate()
{
    if (allocChunk_ == 0 || allocChunk_->blocksAvailable_ == 0)
    {
        Chunks::iterator i = chunks_.begin();
        for (;; ++i)
        {
            if (i == chunks_.end())
            {
                // Initialize
                chunks_.reserve(chunks_.size() + 1);
                Chunk newChunk;
                newChunk.Init(blockSize_, numBlocks_);
                chunks_.push_back(newChunk);
                allocChunk_ = &chunks_.back();
                deallocChunk_ = &chunks_.front();
                break;
            }
            if (i->blocksAvailable_ > 0)
            {
                allocChunk_ = &*i;
                break;
            }
        }
    }
    assert(allocChunk_ != 0);
    assert(allocChunk_->blocksAvailable_ > 0);
    
    return allocChunk_->Allocate(blockSize_);
}

////////////////////////////////////////////////////////////////////////////////
// FixedAllocator::Deallocate
// Deallocates a block previously allocated with Allocate
// (undefined behavior if called with the wrong pointer)
////////////////////////////////////////////////////////////////////////////////

void FixedAllocator::Deallocate(void* p)
{
    assert(!chunks_.empty());
    assert(&chunks_.front() <= deallocChunk_);
    assert(&chunks_.back() >= deallocChunk_);
    
    deallocChunk_  = VicinityFind(p);
    assert(deallocChunk_);

    DoDeallocate(p);
}

////////////////////////////////////////////////////////////////////////////////
// FixedAllocator::VicinityFind (internal)
// Finds the chunk corresponding to a pointer, using an efficient search
////////////////////////////////////////////////////////////////////////////////

FixedAllocator::Chunk* FixedAllocator::VicinityFind(void* p)
{
    assert(!chunks_.empty());
    assert(deallocChunk_);

    const std::size_t chunkLength = numBlocks_ * blockSize_;

    Chunk* lo = deallocChunk_;
    Chunk* hi = deallocChunk_ + 1;
    Chunk* loBound = &chunks_.front();
    Chunk* hiBound = &chunks_.back() + 1;

	// Special case: deallocChunk_ is the last in the array
	if (hi == hiBound) hi = 0;

    for (;;)
    {
        if (lo)
        {
            if (p >= lo->pData_ && p < lo->pData_ + chunkLength)
            {
                return lo;
            }
            if (lo == loBound) lo = 0;
            else --lo;
        }
        
        if (hi)
        {
            if (p >= hi->pData_ && p < hi->pData_ + chunkLength)
            {
                return hi;
            }
            if (++hi == hiBound) hi = 0;
        }
    }
    
    // assert(false);
    // return 0;
}

////////////////////////////////////////////////////////////////////////////////
// FixedAllocator::DoDeallocate (internal)
// Performs deallocation. Assumes deallocChunk_ points to the correct chunk
////////////////////////////////////////////////////////////////////////////////

void FixedAllocator::DoDeallocate(void* p)
{
    assert(deallocChunk_->pData_ <= p);
    assert(deallocChunk_->pData_ + numBlocks_ * blockSize_ > p);

    // call into the chunk, will adjust the inner list but won't release memory
    deallocChunk_->Deallocate(p, blockSize_);

    if (deallocChunk_->blocksAvailable_ == numBlocks_)
    {
        // deallocChunk_ is completely free, should we release it? 
        
        Chunk& lastChunk = chunks_.back();
        
        if (&lastChunk == deallocChunk_)
        {
            // check if we have two last chunks empty
            
            if (chunks_.size() > 1 && 
                deallocChunk_[-1].blocksAvailable_ == numBlocks_)
            {
                // Two free chunks, discard the last one
                lastChunk.Release();
                chunks_.pop_back();
                allocChunk_ = deallocChunk_ = &chunks_.front();
            }
            return;
        }
        
        if (lastChunk.blocksAvailable_ == numBlocks_)
        {
            // Two free blocks, discard one
            lastChunk.Release();
            chunks_.pop_back();
            allocChunk_ = deallocChunk_;
        }
        else
        {
            // move the empty chunk to the end
            std::swap(*deallocChunk_, lastChunk);
            allocChunk_ = &chunks_.back();
        }
    }
}

////////////////////////////////////////////////////////////////////////////////
// SmallObjAllocator::SmallObjAllocator
// Creates an allocator for small objects given chunk size and maximum 'small'
//     object size
////////////////////////////////////////////////////////////////////////////////

SmallObjAllocator::SmallObjAllocator(
        std::size_t chunkSize, 
        std::size_t maxObjectSize)
    : pLastAlloc_(0), pLastDealloc_(0)
    , chunkSize_(chunkSize), maxObjectSize_(maxObjectSize) 
{   
}

////////////////////////////////////////////////////////////////////////////////
// SmallObjAllocator::Allocate
// Allocates 'numBytes' memory
// Uses an internal pool of FixedAllocator objects for small objects  
////////////////////////////////////////////////////////////////////////////////

void* SmallObjAllocator::Allocate(std::size_t numBytes)
{
    if (numBytes > maxObjectSize_) return operator new(numBytes);
    
    if (pLastAlloc_ && pLastAlloc_->BlockSize() == numBytes)
    {
        return pLastAlloc_->Allocate();
    }
    Pool::iterator i = std::lower_bound(pool_.begin(), pool_.end(), numBytes);
    if (i == pool_.end() || i->BlockSize() != numBytes)
    {
        i = pool_.insert(i, FixedAllocator(numBytes));
        pLastDealloc_ = &*pool_.begin();
    }
    pLastAlloc_ = &*i;
    return pLastAlloc_->Allocate();
}

////////////////////////////////////////////////////////////////////////////////
// SmallObjAllocator::Deallocate
// Deallocates memory previously allocated with Allocate
// (undefined behavior if you pass any other pointer)
////////////////////////////////////////////////////////////////////////////////

void SmallObjAllocator::Deallocate(void* p, std::size_t numBytes)
{
    if (numBytes > maxObjectSize_) return operator delete(p);

    if (pLastDealloc_ && pLastDealloc_->BlockSize() == numBytes)
    {
        pLastDealloc_->Deallocate(p);
        return;
    }
    Pool::iterator i = std::lower_bound(pool_.begin(), pool_.end(), numBytes);
    assert(i != pool_.end());
    assert(i->BlockSize() == numBytes);
    pLastDealloc_ = &*i;
    pLastDealloc_->Deallocate(p);
}

////////////////////////////////////////////////////////////////////////////////
// Change log:
// March 20: fix exception safety issue in FixedAllocator::Allocate 
//     (thanks to Chris Udazvinis for pointing that out)
// June 20, 2001: ported by Nick Thurn to gcc 2.95.3. Kudos, Nick!!!
// May  10, 2002: ported by Rani Sharoni to VC7 (RTM - 9466)
////////////////////////////////////////////////////////////////////////////////

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Software Developer
United States United States
Rohit Joshi is a software engineer working for a telecom company in USA. He has development expirience using C, C++ ,C#, VoiceXML, ASR, IMAP, LDAP, HTTP, SIP, H323 on unix/linux and platforms.

Comments and Discussions