Click here to Skip to main content
15,879,326 members
Articles / Desktop Programming / MFC

Neural Network for Recognition of Handwritten Digits

Rate me:
Please Sign up or sign in to vote.
4.97/5 (240 votes)
5 Dec 200668 min read 1.9M   57.5K   571  
A convolutional neural network achieves 99.26% accuracy on a modified NIST database of hand-written digits.
// WndNeuronViewer.cpp : implementation file
//

#include "stdafx.h"
#include "MNist.h"
#include "WndNeuronViewer.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

/////////////////////////////////////////////////////////////////////////////
// CWndNeuronViewer

CWndNeuronViewer::CWndNeuronViewer()
{
}

CWndNeuronViewer::~CWndNeuronViewer()
{
}


BEGIN_MESSAGE_MAP(CWndNeuronViewer, CWnd)
	//{{AFX_MSG_MAP(CWndNeuronViewer)
	ON_WM_CREATE()
	ON_WM_NCDESTROY()
	ON_WM_PAINT()
	ON_WM_MOUSEMOVE()
	ON_MESSAGE( WM_MOUSELEAVE, OnMouseLeave )
	ON_WM_ERASEBKGND()
	//}}AFX_MSG_MAP
END_MESSAGE_MAP()


/////////////////////////////////////////////////////////////////////////////
// CWndNeuronViewer message handlers

int CWndNeuronViewer::OnCreate(LPCREATESTRUCT lpCreateStruct) 
{
	if (CWnd::OnCreate(lpCreateStruct) == -1)
		return -1;
	
	// TODO: Add your specialized creation code here

	// create the magnifier window, and make certain it's hidden

	BOOL bRet = m_wndMagnifier.CreateEx( NULL, AfxRegisterWndClass( CS_DBLCLKS | CS_HREDRAW | CS_VREDRAW ),
		_T("NeuronOutputMagnifier"), WS_CHILD, CRect(0,0,0,0), ::AfxGetMainWnd(), 0x1345 );

	ASSERT( bRet != FALSE );

	m_wndMagnifier.ShowWindow( SW_HIDE );

	// allocate memory for DIB bitmap values, and create default for DDB bitmap
	// we have a fixed "viewer" size of 120x120 pixels

#define DIB_VIEWER_SIZE (230)

	m_cRows = DIB_VIEWER_SIZE;
	m_cCols = DIB_VIEWER_SIZE;

	m_cPixels = m_cRows * m_cCols;
	
	m_pValues = new COLORREF[ m_cPixels ];

	int ii;

	for ( ii=0; ii<m_cPixels; ++ii )
	{
		m_pValues[ii] = RGB_TO_BGRQUAD(255,255,255);
	}

	// create device dependent bitmap and store for future OnPaints

	CClientDC dc(this);

	m_bmDisplayedBitmap.CreateCompatibleBitmap( &dc, m_cCols, m_cRows );

	BITMAPINFO bmInfo;
	BITMAPINFOHEADER& bmInfoHeader = bmInfo.bmiHeader;

	::memset( &bmInfo, 0, sizeof(BITMAPINFO) );
	bmInfoHeader.biSize = sizeof(BITMAPINFOHEADER);
	bmInfoHeader.biWidth = m_cCols;
	bmInfoHeader.biHeight = -m_cRows;  // positive number for bottom-up DIB, negative for top-down
	bmInfoHeader.biPlanes = 1;
	bmInfoHeader.biBitCount = 32;
	bmInfoHeader.biCompression = BI_RGB;
	bmInfoHeader.biSizeImage = 0;
	bmInfoHeader.biXPelsPerMeter = 100;  // arbitrary value
	bmInfoHeader.biYPelsPerMeter = 100;  // arbitrary
	bmInfoHeader.biClrUsed = 0;
	bmInfoHeader.biClrImportant = 0;

	int iRet = ::SetDIBits( (HDC)dc, (HBITMAP)m_bmDisplayedBitmap, 0, m_cRows, (LPVOID)m_pValues, &bmInfo, DIB_RGB_COLORS );


	
	return 0;
}

void CWndNeuronViewer::OnNcDestroy() 
{
	
	delete[] m_pValues;
	m_bmDisplayedBitmap.DeleteObject();


	CWnd::OnNcDestroy();
	
	// TODO: Add your message handler code here
	
}

void CWndNeuronViewer::OnPaint() 
{
	CPaintDC dc(this); // device context for painting
	
	// TODO: Add your message handler code here

	// draw out the pre-stored DDB bitmap

	CDC memDC;
	memDC.CreateCompatibleDC( &dc );
	CBitmap* pOldBitmap = memDC.SelectObject( &m_bmDisplayedBitmap );

	CRect rc;
	GetClientRect( &rc );

	int left = rc.Width()/2 - DIB_VIEWER_SIZE/2;
	int top = rc.Height()/2 - DIB_VIEWER_SIZE/2;

	if ( left<0 ) left = 0;
	if ( top<0 ) top = 0;

	dc.BitBlt( left, top, m_cCols, m_cRows, &memDC, 0, 0, SRCCOPY );

	memDC.SelectObject( pOldBitmap );
	memDC.DeleteDC();
	
	// Do not call CWnd::OnPaint() for painting messages
}


void CWndNeuronViewer::BuildBitmapFromNeuronOutputs( std::vector< std::vector< double > >& neuronOutputs )
{
	ASSERT( ::IsWindow( this->m_hWnd ) );

	// zero out current DIB bitmap values

	int ii, jj;
	DWORD whiteness = RGB_TO_BGRQUAD(255,255,255);

	for ( ii=0; ii<m_cPixels; ++ii )
	{
		m_pValues[ ii ] = whiteness;
	}


	// go through each layer's output individually

	std::vector< double >::iterator it;

	int iSize = neuronOutputs.size();  // should be the same as the number of layers

	// draw the output of the neurons from the zero-th layer, which should be identical to 
	// input image

	it = neuronOutputs[ 0 ].begin();

	DrawOutputBox( 10, 10, 29, 29, it );

	ASSERT( it == neuronOutputs[ 0 ].end() );


	// draw the output of the neurons from the first layer.
	// there are 6 feature maps in the first layer, each 13x13

	it = neuronOutputs[ 1 ].begin();

	int offV = 10;
	int offH = 44;


	for ( ii=0; ii<6; ++ii )
	{
		DrawOutputBox( offH, offV, 13, 13, it );
		offV += 14;
	}

	ASSERT( it == neuronOutputs[ 1 ].end() );



	// draw the output of the neurons from the second layer.
	// There are 50 feature maps in the second layer, each 5x5
	// We will draw these in a block 5 across by 10 down

	it = neuronOutputs[ 2 ].begin();

	offV = 10;
	offH = 61;

	for ( ii=0; ii<5; ++ii )
	{
		for ( jj=0; jj<10; ++jj )
		{		
			DrawOutputBox( offH, offV, 5, 5, it );
			offV += 6;
		}

		offV = 10;
		offH += 6;
	}

	ASSERT( it == neuronOutputs[ 2 ].end() );


	// draw the outputs of the neurons in the third layer.
	// The third layer is a fully-connected layer in which there are 100 neurons,
	// which will be displayed in 1x1 patches, in a single column of 100 down

	it = neuronOutputs[ 3 ].begin();

	offV = 10;
	offH = 94;

	for ( ii=0; ii<100; ++ii )
	{
		DrawOutputBox( offH, offV, 1, 1, it );
		offV += 2;
	}

	ASSERT( it == neuronOutputs[ 3 ].end() );


	// The fourth layer is the final output layer, and we draw it in a different way
	// We output the digits 0 though 9, with an intensity that codes the output of
	// the corresponding neuron

	it = neuronOutputs[ 4 ].begin();

	double dGray;
	int iGray;
	CString str;
	DWORD dwDigitValues[ 20*20 ];

	UINT iBestIndex = 0;
	double dBestChoice = -99.0;

	CClientDC dc( this );
	CBitmap bm;
	bm.CreateCompatibleBitmap( &dc, 20, 20 );

	CDC memDC;
	memDC.CreateCompatibleDC( &dc );

	LOGFONT lf = {0};
	lf.lfHeight = 20;
	lf.lfWeight = FW_BOLD;
	lf.lfPitchAndFamily = FF_SWISS;
	_stprintf( lf.lfFaceName, _T("Arial") );

	CFont font;
	font.CreateFontIndirect( &lf );

	CBitmap* pOldBitmap = memDC.SelectObject( &bm );
	CFont* pOldFont = memDC.SelectObject( &font );

	offV = 10;
	offH = 99;
	
	for ( ii=0; ii<10; ++ii )
	{
		memDC.FillSolidRect( 0,0,20,20, RGB(255,255,255) );
		memDC.SetBkMode( TRANSPARENT );
		
		dGray = *it;
		iGray = (int)( (dGray + 1.0)/2.0 * 255.0 );
		iGray = 255 - iGray;
		
		if ( iGray > 255 )
			iGray = 255;
		if ( iGray < 0 )
			iGray = 0;

		if ( dGray > dBestChoice )
		{
			dBestChoice = dGray;
			iBestIndex = ii;
		}
		
		it++;
		memDC.SetTextColor( RGB(iGray,iGray,iGray) );
		
		str.Format( _T("%d"), ii );
		memDC.DrawText( str, 1, CRect(0,0,19,19), DT_SINGLELINE | DT_CENTER | DT_VCENTER );
		
		// de-select the bitmap so that we can extract the DIB bits from it
		
		memDC.SelectObject( pOldBitmap );
		
		
		// bm now contains a DDB bitmap of the desired digit.  Getting the DIB bitmap values
		// from it is a two-step process, in which we call GetDIBits twice, the first time to 
		// populate a BITMAPINFO structure, and the second time to get the actual DIB values
		
		BITMAPINFO bmInfo;
		BITMAPINFOHEADER& bmInfoHeader = bmInfo.bmiHeader;
		
		::memset( &bmInfo, 0, sizeof(BITMAPINFO) );
		bmInfoHeader.biSize = sizeof(BITMAPINFOHEADER);
		
		// call GetDIBits with lots of NULL values to populate the bmInfo structure 
		
		int iRet = ::GetDIBits( (HDC)dc, (HBITMAP)bm, 0, 0, NULL, &bmInfo, DIB_RGB_COLORS );
		
//////////////////////
//  apparently, we cannot force the gdi to give us a top-down bitmap.  It insists on giving bottom-up and
// if we try to force it to give a top-down by setting biHeight to a negative value, the GetDIBits function fails

/*		
		if ( bmInfoHeader.biHeight > 0 )
		{
			bmInfoHeader.biHeight =  bmInfoHeader.biHeight;  // negative forces a top-down DIB, positive a bottom-up
		}
*/
		
		bmInfoHeader.biCompression = BI_RGB;  // force Windows to give us a plain-old array of BRGA color values
		bmInfoHeader.biBitCount = 32; // force Windows to give us a full 32 bit color w/o a color table 
		
		// call GetDIBits to get actual bitmap bits
		
		iRet = ::GetDIBits( (HDC)dc, (HBITMAP)bm, 0, bmInfoHeader.biHeight, (LPVOID)dwDigitValues, &bmInfo, DIB_RGB_COLORS );

		// if biHeight was positive, then we got a bottom-up bitmap
		// Since we need a top-down, we must reverse it

		if ( bmInfoHeader.biHeight > 0 )
		{
			double dTemp;
			for ( int kk=0; kk<10; ++kk )
			{
				for ( int mm=0; mm<20; ++mm )
				{
				dTemp = dwDigitValues[ mm + 20*kk ];
				dwDigitValues[ mm + 20*kk ] = dwDigitValues[ mm + 20*(19-kk) ];
				dwDigitValues[ mm + 20*(19-kk) ] = dTemp;
				}
			}
		}


		
		
		// finally, dwDigitValues contains the BGR values for the intensity-coded digit
		// copy it to the output
		
		DrawOutputBox( offH, offV, 20, 20, dwDigitValues, 400 );
		
		offV += 21;
		
		// re-select thing into the dc to ready the dc for the next iteration
		
		pOldBitmap = memDC.SelectObject( &bm );
		
	}

	// clean up

	memDC.SelectObject( pOldBitmap );
	bm.DeleteObject();
	font.DeleteObject();
	memDC.DeleteDC();



	// put a triangular pointer next to the "best" choice

#define BEST_CHOICE_COLOR (RGB_TO_BGRQUAD(255,0,0))

	offH = 122;
	offV = 20 + iBestIndex*21;

	for ( ii=0; ii<6; ++ii )
	{
		for ( jj=0; jj<=ii; ++jj )
		{
	At( m_pValues, offV+jj, offH+ii ) = BEST_CHOICE_COLOR;
		At( m_pValues, offV-jj, offH+ii ) = BEST_CHOICE_COLOR;
		}
	}



#undef BEST_CHOICE_COLOR








	











	// create device dependent bitmap and store for future OnPaints

	// CClientDC dc(this);

	BITMAPINFO bmInfo;
	BITMAPINFOHEADER& bmInfoHeader = bmInfo.bmiHeader;

	::memset( &bmInfo, 0, sizeof(BITMAPINFO) );
	bmInfoHeader.biSize = sizeof(BITMAPINFOHEADER);
	bmInfoHeader.biWidth = m_cCols;
	bmInfoHeader.biHeight = -m_cRows;  // positive number for bottom-up DIB, negative for top-down
	bmInfoHeader.biPlanes = 1;
	bmInfoHeader.biBitCount = 32;
	bmInfoHeader.biCompression = BI_RGB;
	bmInfoHeader.biSizeImage = 0;
	bmInfoHeader.biXPelsPerMeter = 100;  // arbitrary value
	bmInfoHeader.biYPelsPerMeter = 100;  // arbitrary
	bmInfoHeader.biClrUsed = 0;
	bmInfoHeader.biClrImportant = 0;

	int iRet = ::SetDIBits( (HDC)dc, (HBITMAP)m_bmDisplayedBitmap, 0, m_cRows, (LPVOID)m_pValues, &bmInfo, DIB_RGB_COLORS );
}

void CWndNeuronViewer::DrawOutputBox( UINT left, UINT top, UINT clientWidth, UINT clientHeight, std::vector< double >::iterator& it )
{
	// draws gray values into a client box surrounded by a one-pixel-width bright gray frame

#define FRAMECOLOR (RGB_TO_BGRQUAD(170, 192, 255 ))  // similar to cornflowerblue (whose exact value is RGB( 100, 149, 237 )); COLORREF value is 0x00FFC0AA; web value is #AAC0FF
	
	UINT windowWidth = clientWidth + 2;
	UINT windowHeight = clientHeight + 2;

	int row, col;

	double dGray;
	int iGray;

	// draw top and bottom of frame

	for ( col=left; col<left+windowWidth; ++col )
	{
		At( m_pValues, top, col ) = FRAMECOLOR;
		At( m_pValues, top+windowHeight-1, col ) = FRAMECOLOR;
	}

	// draw left and right of frame

	for ( row=top; row<top+windowHeight; ++row )
	{
		At( m_pValues, row, left ) = FRAMECOLOR;
		At( m_pValues, row, left+windowWidth-1 ) = FRAMECOLOR;
	}

	for ( row=top; row<top+clientHeight; ++row )
	{
		for ( col=left; col<left+clientWidth; ++col )
		{
			dGray = *it;
			iGray = (int)( (dGray + 1.0)/2.0 * 255.0 );

			if ( iGray > 255 )
				iGray = 255;
			if ( iGray < 0 )
				iGray = 0;

			At( m_pValues, row+1, col+1 ) = RGB_TO_BGRQUAD( iGray, iGray, iGray );
			it++;
		}
	}




#undef FRAMECOLOR

}

void CWndNeuronViewer::DrawOutputBox( UINT left, UINT top, UINT clientWidth, UINT clientHeight, DWORD* pArray, int count )
{
	// silly, but we convert to a std::vector of doubles and then call the stl version

	std::vector< double > temp;
	double d;
	int gg;

	for ( int ii=0; ii<count; ++ii )
	{
		gg = ( pArray[ii] & 0x0000FF00 ) >> 8;  // extract green value, as most representative of gray-scale
		d = (double)(gg-128)/128.0;
		temp.push_back( d );
	}

	std::vector< double >::iterator it = temp.begin();

	DrawOutputBox( left, top, clientWidth, clientHeight, it );
	
}

void CWndNeuronViewer::OnMouseMove(UINT nFlags, CPoint point) 
{
	CWnd::OnMouseMove(nFlags, point);

	// blt magnified image into m_wndMagnifier, and re-position and show it

	CRect rc, rc1;
	GetClientRect( rc );
	ClientToScreen( rc );
	::AfxGetMainWnd()->ScreenToClient( rc );

	rc1 = rc;

	int nSize = ::GetPreferences().m_nMagWindowSize * g_cImageSize;

	rc.OffsetRect( -40, 110 );


	m_wndMagnifier.SetWindowPos( &wndTopMost, rc.left, rc.top, nSize, nSize, 
		SWP_SHOWWINDOW | SWP_NOZORDER );
		
	CClientDC dcMag( &m_wndMagnifier );

	CDC memDC;
	memDC.CreateCompatibleDC( &dcMag );
	CBitmap* pOldBitmap = memDC.SelectObject( &m_bmDisplayedBitmap );

	int divisor = ::GetPreferences().m_nMagWindowMagnification;
	if ( divisor < 1 ) divisor = 1;
	int delta = nSize/divisor;
	int originX = (rc1.Width() - DIB_VIEWER_SIZE)/2;
	int originY = (rc1.Height() - DIB_VIEWER_SIZE)/2;

	
	dcMag.StretchBlt( 0, 0, nSize, nSize, &memDC, point.x-delta/2-originX, point.y-delta/2-originY, delta, delta, SRCCOPY );

	memDC.SelectObject( pOldBitmap );

	// track mouse for mouse-leave message
	// note the complementary handler for OnMouseLeave based on _TrackMouseEvent

	TRACKMOUSEEVENT tme;
		tme.cbSize = sizeof( tme );
		tme.dwFlags = TME_LEAVE;
		tme.hwndTrack = m_hWnd;
		
		_TrackMouseEvent( &tme );
	
}


afx_msg LRESULT CWndNeuronViewer::OnMouseLeave(WPARAM, LPARAM)
{
	// hides magnification window as mouse leaves the window area

	m_wndMagnifier.ShowWindow( SW_HIDE );

	return (0L);
}

BOOL CWndNeuronViewer::OnEraseBkgnd(CDC* pDC) 
{
	// TODO: Add your message handler code here and/or call default
	
	CWnd::OnEraseBkgnd(pDC);

	CRect rc;
	GetClientRect( &rc );

	pDC->FillSolidRect( &rc, RGB(255,255,255) );  // fill the client with whiteness

	return TRUE;
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article has no explicit license attached to it but may contain usage terms in the article text or the download files themselves. If in doubt please contact the author via the discussion board below.

A list of licenses authors might use can be found here


Written By
United States United States
Mike O'Neill is a patent attorney in Southern California, where he specializes in computer and software-related patents. He programs as a hobby, and in a vain attempt to keep up with and understand the technology of his clients.

Comments and Discussions