Click here to Skip to main content
15,881,852 members
Articles / Mobile Apps

Windows Phone Labyrinth

Rate me:
Please Sign up or sign in to vote.
4.95/5 (53 votes)
31 Jan 2012CPOL10 min read 129.4K   53.8K   115  
A Windows Phone application using accelerometer emulator and Farseer physics engine
/*
* Farseer Physics Engine based on Box2D.XNA port:
* Copyright (c) 2010 Ian Qvist
* 
* Box2D.XNA port of Box2D:
* Copyright (c) 2009 Brandon Furtwangler, Nathan Furtwangler
*
* Original source Box2D:
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com 
* 
* This software is provided 'as-is', without any express or implied 
* warranty.  In no event will the authors be held liable for any damages 
* arising from the use of this software. 
* Permission is granted to anyone to use this software for any purpose, 
* including commercial applications, and to alter it and redistribute it 
* freely, subject to the following restrictions: 
* 1. The origin of this software must not be misrepresented; you must not 
* claim that you wrote the original software. If you use this software 
* in a product, an acknowledgment in the product documentation would be 
* appreciated but is not required. 
* 2. Altered source versions must be plainly marked as such, and must not be 
* misrepresented as being the original software. 
* 3. This notice may not be removed or altered from any source distribution. 
*/

using FarseerPhysics.Common;
using Microsoft.Xna.Framework;

namespace FarseerPhysics.Collision.Shapes
{
    /// <summary>
    /// A line segment (edge) Shape. These can be connected in chains or loops
    /// to other edge Shapes. The connectivity information is used to ensure
    /// correct contact normals.
    /// </summary>
    public class EdgeShape : Shape
    {
        public bool HasVertex0, HasVertex3;

        /// <summary>
        /// Optional adjacent vertices. These are used for smooth collision.
        /// </summary>
        public Vector2 Vertex0;

        /// <summary>
        /// Optional adjacent vertices. These are used for smooth collision.
        /// </summary>
        public Vector2 Vertex3;

        /// <summary>
        /// Edge start vertex
        /// </summary>
        private Vector2 _vertex1;

        /// <summary>
        /// Edge end vertex
        /// </summary>
        private Vector2 _vertex2;

        internal EdgeShape()
            : base(0)
        {
            ShapeType = ShapeType.Edge;
            _radius = Settings.PolygonRadius;
        }

        public EdgeShape(Vector2 start, Vector2 end)
            : base(0)
        {
            ShapeType = ShapeType.Edge;
            _radius = Settings.PolygonRadius;
            Set(start, end);
        }

        public override int ChildCount
        {
            get { return 1; }
        }

        /// <summary>
        /// These are the edge vertices
        /// </summary>
        public Vector2 Vertex1
        {
            get { return _vertex1; }
            set
            {
                _vertex1 = value;
                ComputeProperties();
            }
        }

        /// <summary>
        /// These are the edge vertices
        /// </summary>
        public Vector2 Vertex2
        {
            get { return _vertex2; }
            set
            {
                _vertex2 = value;
                ComputeProperties();
            }
        }

        /// <summary>
        /// Set this as an isolated edge.
        /// </summary>
        /// <param name="start">The start.</param>
        /// <param name="end">The end.</param>
        public void Set(Vector2 start, Vector2 end)
        {
            _vertex1 = start;
            _vertex2 = end;
            HasVertex0 = false;
            HasVertex3 = false;

            ComputeProperties();
        }

        public override Shape Clone()
        {
            EdgeShape edge = new EdgeShape();
            edge._radius = _radius;
            edge._density = _density;
            edge.HasVertex0 = HasVertex0;
            edge.HasVertex3 = HasVertex3;
            edge.Vertex0 = Vertex0;
            edge._vertex1 = _vertex1;
            edge._vertex2 = _vertex2;
            edge.Vertex3 = Vertex3;
            edge.MassData = MassData;
            return edge;
        }

        /// <summary>
        /// Test a point for containment in this shape. This only works for convex shapes.
        /// </summary>
        /// <param name="transform">The shape world transform.</param>
        /// <param name="point">a point in world coordinates.</param>
        /// <returns>True if the point is inside the shape</returns>
        public override bool TestPoint(ref Transform transform, ref Vector2 point)
        {
            return false;
        }

        /// <summary>
        /// Cast a ray against a child shape.
        /// </summary>
        /// <param name="output">The ray-cast results.</param>
        /// <param name="input">The ray-cast input parameters.</param>
        /// <param name="transform">The transform to be applied to the shape.</param>
        /// <param name="childIndex">The child shape index.</param>
        /// <returns>True if the ray-cast hits the shape</returns>
        public override bool RayCast(out RayCastOutput output, ref RayCastInput input,
                                     ref Transform transform, int childIndex)
        {
            // p = p1 + t * d
            // v = v1 + s * e
            // p1 + t * d = v1 + s * e
            // s * e - t * d = p1 - v1

            output = new RayCastOutput();

            // Put the ray into the edge's frame of reference.
            Vector2 p1 = MathUtils.MultiplyT(ref transform.R, input.Point1 - transform.Position);
            Vector2 p2 = MathUtils.MultiplyT(ref transform.R, input.Point2 - transform.Position);
            Vector2 d = p2 - p1;

            Vector2 v1 = _vertex1;
            Vector2 v2 = _vertex2;
            Vector2 e = v2 - v1;
            Vector2 normal = new Vector2(e.Y, -e.X);
            normal.Normalize();

            // q = p1 + t * d
            // dot(normal, q - v1) = 0
            // dot(normal, p1 - v1) + t * dot(normal, d) = 0
            float numerator = Vector2.Dot(normal, v1 - p1);
            float denominator = Vector2.Dot(normal, d);

            if (denominator == 0.0f)
            {
                return false;
            }

            float t = numerator / denominator;
            if (t < 0.0f || 1.0f < t)
            {
                return false;
            }

            Vector2 q = p1 + t * d;

            // q = v1 + s * r
            // s = dot(q - v1, r) / dot(r, r)
            Vector2 r = v2 - v1;
            float rr = Vector2.Dot(r, r);
            if (rr == 0.0f)
            {
                return false;
            }

            float s = Vector2.Dot(q - v1, r) / rr;
            if (s < 0.0f || 1.0f < s)
            {
                return false;
            }

            output.Fraction = t;
            if (numerator > 0.0f)
            {
                output.Normal = -normal;
            }
            else
            {
                output.Normal = normal;
            }
            return true;
        }

        /// <summary>
        /// Given a transform, compute the associated axis aligned bounding box for a child shape.
        /// </summary>
        /// <param name="aabb">The aabb results.</param>
        /// <param name="transform">The world transform of the shape.</param>
        /// <param name="childIndex">The child shape index.</param>
        public override void ComputeAABB(out AABB aabb, ref Transform transform, int childIndex)
        {
            Vector2 v1 = MathUtils.Multiply(ref transform, _vertex1);
            Vector2 v2 = MathUtils.Multiply(ref transform, _vertex2);

            Vector2 lower = Vector2.Min(v1, v2);
            Vector2 upper = Vector2.Max(v1, v2);

            Vector2 r = new Vector2(Radius, Radius);
            aabb.LowerBound = lower - r;
            aabb.UpperBound = upper + r;
        }

        /// <summary>
        /// Compute the mass properties of this shape using its dimensions and density.
        /// The inertia tensor is computed about the local origin, not the centroid.
        /// </summary>
        public override void ComputeProperties()
        {
            MassData.Centroid = 0.5f * (_vertex1 + _vertex2);
        }

        public override float ComputeSubmergedArea(Vector2 normal, float offset, Transform xf, out Vector2 sc)
        {
            sc = Vector2.Zero;
            return 0;
        }

        public bool CompareTo(EdgeShape shape)
        {
            return (HasVertex0 == shape.HasVertex0 &&
                    HasVertex3 == shape.HasVertex3 &&
                    Vertex0 == shape.Vertex0 &&
                    Vertex1 == shape.Vertex1 &&
                    Vertex2 == shape.Vertex2 &&
                    Vertex3 == shape.Vertex3);
        }
    }
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Instructor / Trainer Alura Cursos Online
Brazil Brazil

Comments and Discussions