Click here to Skip to main content
15,885,309 members
Articles / Desktop Programming / MFC

MsAccess MdbTools with MFC and .NET

Rate me:
Please Sign up or sign in to vote.
4.82/5 (9 votes)
13 Jan 2012LGPL310 min read 69K   9.9K   49  
Viewer of MsAccess databases directly from MFC and .NET - Repair corrupt databases
/* GLIB - Library of useful routines for C programming
 * Copyright (C) 1995-1997  Peter Mattis, Spencer Kimball and Josh MacDonald
 *
 * GNode: N-way tree implementation.
 * Copyright (C) 1998 Tim Janik
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

/*
 * Modified by the GLib Team and others 1997-2000.  See the AUTHORS
 * file for a list of people on the GLib Team.  See the ChangeLog
 * files for a list of changes.  These files are distributed with
 * GLib at ftp://ftp.gtk.org/pub/gtk/.
 */

/*
 * MT safe
 */

#include "config.h"

#include "gnode.h"

#include "gtestutils.h"

/**
 * SECTION:trees-nary
 * @title: N-ary Trees
 * @short_description: trees of data with any number of branches
 *
 * The #GNode struct and its associated functions provide a N-ary tree
 * data structure, where nodes in the tree can contain arbitrary data.
 *
 * To create a new tree use g_node_new().
 *
 * To insert a node into a tree use g_node_insert(),
 * g_node_insert_before(), g_node_append() and g_node_prepend().
 *
 * To create a new node and insert it into a tree use
 * g_node_insert_data(), g_node_insert_data_before(),
 * g_node_append_data() and g_node_prepend_data().
 *
 * To reverse the children of a node use g_node_reverse_children().
 *
 * To find a node use g_node_get_root(), g_node_find(),
 * g_node_find_child(), g_node_child_index(), g_node_child_position(),
 * g_node_first_child(), g_node_last_child(), g_node_nth_child(),
 * g_node_first_sibling(), g_node_prev_sibling(), g_node_next_sibling()
 * or g_node_last_sibling().
 *
 * To get information about a node or tree use G_NODE_IS_LEAF(),
 * G_NODE_IS_ROOT(), g_node_depth(), g_node_n_nodes(),
 * g_node_n_children(), g_node_is_ancestor() or g_node_max_height().
 *
 * To traverse a tree, calling a function for each node visited in the
 * traversal, use g_node_traverse() or g_node_children_foreach().
 *
 * To remove a node or subtree from a tree use g_node_unlink() or
 * g_node_destroy().
 **/

/**
 * GNode:
 * @data: contains the actual data of the node.
 * @next: points to the node's next sibling (a sibling is another
 *        #GNode with the same parent).
 * @prev: points to the node's previous sibling.
 * @parent: points to the parent of the #GNode, or is %NULL if the
 *          #GNode is the root of the tree.
 * @children: points to the first child of the #GNode.  The other
 *            children are accessed by using the @next pointer of each
 *            child.
 *
 * The #GNode struct represents one node in a
 * <link linkend="glib-N-ary-Trees">N-ary Tree</link>. fields
 **/

/**
 * g_node_push_allocator:
 * @dummy: the #GAllocator to use when allocating #GNode elements.
 *
 * Sets the allocator to use to allocate #GNode elements. Use
 * g_node_pop_allocator() to restore the previous allocator.
 *
 * Note that this function is not available if GLib has been compiled
 * with <option>--disable-mem-pools</option>
 *
 * Deprecated:2.10: It does nothing, since #GNode has been converted to
 *                  the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link>
 **/
void g_node_push_allocator (gpointer dummy) { /* present for binary compat only */ }

/**
 * g_node_pop_allocator:
 *
 * Restores the previous #GAllocator, used when allocating #GNode
 * elements.
 *
 * Note that this function is not available if GLib has been compiled
 * with <option>--disable-mem-pools</option>
 *
 * Deprecated:2.10: It does nothing, since #GNode has been converted to
 *                  the <link linkend="glib-Memory-Slices">slice
 *                  allocator</link>
 **/
void g_node_pop_allocator  (void)           { /* present for binary compat only */ }

#define g_node_alloc0()         g_slice_new0 (GNode)
#define g_node_free(node)       g_slice_free (GNode, node)

/* --- functions --- */
/**
 * g_node_new:
 * @data: the data of the new node
 *
 * Creates a new #GNode containing the given data.
 * Used to create the first node in a tree.
 *
 * Returns: a new #GNode
 */
GNode*
g_node_new (gpointer data)
{
  GNode *node = g_node_alloc0 ();
  node->data = data;
  return node;
}

static void
g_nodes_free (GNode *node)
{
  while (node)
    {
      GNode *next = node->next;
      if (node->children)
        g_nodes_free (node->children);
      g_node_free (node);
      node = next;
    }
}

/**
 * g_node_destroy:
 * @root: the root of the tree/subtree to destroy
 *
 * Removes @root and its children from the tree, freeing any memory
 * allocated.
 */
void
g_node_destroy (GNode *root)
{
  g_return_if_fail (root != NULL);
  
  if (!G_NODE_IS_ROOT (root))
    g_node_unlink (root);
  
  g_nodes_free (root);
}

/**
 * g_node_unlink:
 * @node: the #GNode to unlink, which becomes the root of a new tree
 *
 * Unlinks a #GNode from a tree, resulting in two separate trees.
 */
void
g_node_unlink (GNode *node)
{
  g_return_if_fail (node != NULL);
  
  if (node->prev)
    node->prev->next = node->next;
  else if (node->parent)
    node->parent->children = node->next;
  node->parent = NULL;
  if (node->next)
    {
      node->next->prev = node->prev;
      node->next = NULL;
    }
  node->prev = NULL;
}

/**
 * g_node_copy_deep:
 * @node: a #GNode
 * @copy_func: the function which is called to copy the data inside each node,
 *   or %NULL to use the original data.
 * @data: data to pass to @copy_func
 * 
 * Recursively copies a #GNode and its data.
 * 
 * Return value: a new #GNode containing copies of the data in @node.
 *
 * Since: 2.4
 **/
GNode*
g_node_copy_deep (GNode     *node, 
		  GCopyFunc  copy_func,
		  gpointer   data)
{
  GNode *new_node = NULL;

  if (copy_func == NULL)
	return g_node_copy (node);

  if (node)
    {
      GNode *child, *new_child;
      
      new_node = g_node_new (copy_func (node->data, data));
      
      for (child = g_node_last_child (node); child; child = child->prev) 
	{
	  new_child = g_node_copy_deep (child, copy_func, data);
	  g_node_prepend (new_node, new_child);
	}
    }
  
  return new_node;
}

/**
 * g_node_copy:
 * @node: a #GNode
 *
 * Recursively copies a #GNode (but does not deep-copy the data inside the 
 * nodes, see g_node_copy_deep() if you need that).
 *
 * Returns: a new #GNode containing the same data pointers
 */
GNode*
g_node_copy (GNode *node)
{
  GNode *new_node = NULL;
  
  if (node)
    {
      GNode *child;
      
      new_node = g_node_new (node->data);
      
      for (child = g_node_last_child (node); child; child = child->prev)
	g_node_prepend (new_node, g_node_copy (child));
    }
  
  return new_node;
}

/**
 * g_node_insert:
 * @parent: the #GNode to place @node under
 * @position: the position to place @node at, with respect to its siblings
 *     If position is -1, @node is inserted as the last child of @parent
 * @node: the #GNode to insert
 *
 * Inserts a #GNode beneath the parent at the given position.
 *
 * Returns: the inserted #GNode
 */
GNode*
g_node_insert (GNode *parent,
	       gint   position,
	       GNode *node)
{
  g_return_val_if_fail (parent != NULL, node);
  g_return_val_if_fail (node != NULL, node);
  g_return_val_if_fail (G_NODE_IS_ROOT (node), node);
  
  if (position > 0)
    return g_node_insert_before (parent,
				 g_node_nth_child (parent, position),
				 node);
  else if (position == 0)
    return g_node_prepend (parent, node);
  else /* if (position < 0) */
    return g_node_append (parent, node);
}

/**
 * g_node_insert_before:
 * @parent: the #GNode to place @node under
 * @sibling: the sibling #GNode to place @node before. 
 *     If sibling is %NULL, the node is inserted as the last child of @parent.
 * @node: the #GNode to insert
 *
 * Inserts a #GNode beneath the parent before the given sibling.
 *
 * Returns: the inserted #GNode
 */
GNode*
g_node_insert_before (GNode *parent,
		      GNode *sibling,
		      GNode *node)
{
  g_return_val_if_fail (parent != NULL, node);
  g_return_val_if_fail (node != NULL, node);
  g_return_val_if_fail (G_NODE_IS_ROOT (node), node);
  if (sibling)
    g_return_val_if_fail (sibling->parent == parent, node);
  
  node->parent = parent;
  
  if (sibling)
    {
      if (sibling->prev)
	{
	  node->prev = sibling->prev;
	  node->prev->next = node;
	  node->next = sibling;
	  sibling->prev = node;
	}
      else
	{
	  node->parent->children = node;
	  node->next = sibling;
	  sibling->prev = node;
	}
    }
  else
    {
      if (parent->children)
	{
	  sibling = parent->children;
	  while (sibling->next)
	    sibling = sibling->next;
	  node->prev = sibling;
	  sibling->next = node;
	}
      else
	node->parent->children = node;
    }

  return node;
}

/**
 * g_node_insert_after:
 * @parent: the #GNode to place @node under
 * @sibling: the sibling #GNode to place @node after. 
 *     If sibling is %NULL, the node is inserted as the first child of @parent.
 * @node: the #GNode to insert
 *
 * Inserts a #GNode beneath the parent after the given sibling.
 *
 * Returns: the inserted #GNode
 */
GNode*
g_node_insert_after (GNode *parent,
		     GNode *sibling,
		     GNode *node)
{
  g_return_val_if_fail (parent != NULL, node);
  g_return_val_if_fail (node != NULL, node);
  g_return_val_if_fail (G_NODE_IS_ROOT (node), node);
  if (sibling)
    g_return_val_if_fail (sibling->parent == parent, node);

  node->parent = parent;

  if (sibling)
    {
      if (sibling->next)
	{
	  sibling->next->prev = node;
	}
      node->next = sibling->next;
      node->prev = sibling;
      sibling->next = node;
    }
  else
    {
      if (parent->children)
	{
	  node->next = parent->children;
	  parent->children->prev = node;
	}
      parent->children = node;
    }

  return node;
}

/**
 * g_node_prepend:
 * @parent: the #GNode to place the new #GNode under
 * @node: the #GNode to insert
 *
 * Inserts a #GNode as the first child of the given parent.
 *
 * Returns: the inserted #GNode
 */
GNode*
g_node_prepend (GNode *parent,
		GNode *node)
{
  g_return_val_if_fail (parent != NULL, node);
  
  return g_node_insert_before (parent, parent->children, node);
}

/**
 * g_node_get_root:
 * @node: a #GNode
 *
 * Gets the root of a tree.
 *
 * Returns: the root of the tree
 */
GNode*
g_node_get_root (GNode *node)
{
  g_return_val_if_fail (node != NULL, NULL);
  
  while (node->parent)
    node = node->parent;
  
  return node;
}

/**
 * g_node_is_ancestor:
 * @node: a #GNode
 * @descendant: a #GNode
 *
 * Returns %TRUE if @node is an ancestor of @descendant.
 * This is true if node is the parent of @descendant, 
 * or if node is the grandparent of @descendant etc.
 *
 * Returns: %TRUE if @node is an ancestor of @descendant
 */
gboolean
g_node_is_ancestor (GNode *node,
		    GNode *descendant)
{
  g_return_val_if_fail (node != NULL, FALSE);
  g_return_val_if_fail (descendant != NULL, FALSE);
  
  while (descendant)
    {
      if (descendant->parent == node)
	return TRUE;
      
      descendant = descendant->parent;
    }
  
  return FALSE;
}

/**
 * g_node_depth:
 * @node: a #GNode
 *
 * Gets the depth of a #GNode.
 *
 * If @node is %NULL the depth is 0. The root node has a depth of 1.
 * For the children of the root node the depth is 2. And so on.
 *
 * Returns: the depth of the #GNode
 */
guint
g_node_depth (GNode *node)
{
  guint depth = 0;
  
  while (node)
    {
      depth++;
      node = node->parent;
    }
  
  return depth;
}

/**
 * g_node_reverse_children:
 * @node: a #GNode.
 *
 * Reverses the order of the children of a #GNode.
 * (It doesn't change the order of the grandchildren.)
 */
void
g_node_reverse_children (GNode *node)
{
  GNode *child;
  GNode *last;
  
  g_return_if_fail (node != NULL);
  
  child = node->children;
  last = NULL;
  while (child)
    {
      last = child;
      child = last->next;
      last->next = last->prev;
      last->prev = child;
    }
  node->children = last;
}

/**
 * g_node_max_height:
 * @root: a #GNode
 *
 * Gets the maximum height of all branches beneath a #GNode.
 * This is the maximum distance from the #GNode to all leaf nodes.
 *
 * If @root is %NULL, 0 is returned. If @root has no children, 
 * 1 is returned. If @root has children, 2 is returned. And so on.
 *
 * Returns: the maximum height of the tree beneath @root
 */
guint
g_node_max_height (GNode *root)
{
  GNode *child;
  guint max_height = 0;
  
  if (!root)
    return 0;
  
  child = root->children;
  while (child)
    {
      guint tmp_height;
      
      tmp_height = g_node_max_height (child);
      if (tmp_height > max_height)
	max_height = tmp_height;
      child = child->next;
    }
  
  return max_height + 1;
}

static gboolean
g_node_traverse_pre_order (GNode	    *node,
			   GTraverseFlags    flags,
			   GNodeTraverseFunc func,
			   gpointer	     data)
{
  if (node->children)
    {
      GNode *child;
      
      if ((flags & G_TRAVERSE_NON_LEAFS) &&
	  func (node, data))
	return TRUE;
      
      child = node->children;
      while (child)
	{
	  GNode *current;
	  
	  current = child;
	  child = current->next;
	  if (g_node_traverse_pre_order (current, flags, func, data))
	    return TRUE;
	}
    }
  else if ((flags & G_TRAVERSE_LEAFS) &&
	   func (node, data))
    return TRUE;
  
  return FALSE;
}

static gboolean
g_node_depth_traverse_pre_order (GNode		  *node,
				 GTraverseFlags	   flags,
				 guint		   depth,
				 GNodeTraverseFunc func,
				 gpointer	   data)
{
  if (node->children)
    {
      GNode *child;
      
      if ((flags & G_TRAVERSE_NON_LEAFS) &&
	  func (node, data))
	return TRUE;
      
      depth--;
      if (!depth)
	return FALSE;
      
      child = node->children;
      while (child)
	{
	  GNode *current;
	  
	  current = child;
	  child = current->next;
	  if (g_node_depth_traverse_pre_order (current, flags, depth, func, data))
	    return TRUE;
	}
    }
  else if ((flags & G_TRAVERSE_LEAFS) &&
	   func (node, data))
    return TRUE;
  
  return FALSE;
}

static gboolean
g_node_traverse_post_order (GNode	     *node,
			    GTraverseFlags    flags,
			    GNodeTraverseFunc func,
			    gpointer	      data)
{
  if (node->children)
    {
      GNode *child;
      
      child = node->children;
      while (child)
	{
	  GNode *current;
	  
	  current = child;
	  child = current->next;
	  if (g_node_traverse_post_order (current, flags, func, data))
	    return TRUE;
	}
      
      if ((flags & G_TRAVERSE_NON_LEAFS) &&
	  func (node, data))
	return TRUE;
      
    }
  else if ((flags & G_TRAVERSE_LEAFS) &&
	   func (node, data))
    return TRUE;
  
  return FALSE;
}

static gboolean
g_node_depth_traverse_post_order (GNode		   *node,
				  GTraverseFlags    flags,
				  guint		    depth,
				  GNodeTraverseFunc func,
				  gpointer	    data)
{
  if (node->children)
    {
      depth--;
      if (depth)
	{
	  GNode *child;
	  
	  child = node->children;
	  while (child)
	    {
	      GNode *current;
	      
	      current = child;
	      child = current->next;
	      if (g_node_depth_traverse_post_order (current, flags, depth, func, data))
		return TRUE;
	    }
	}
      
      if ((flags & G_TRAVERSE_NON_LEAFS) &&
	  func (node, data))
	return TRUE;
      
    }
  else if ((flags & G_TRAVERSE_LEAFS) &&
	   func (node, data))
    return TRUE;
  
  return FALSE;
}

static gboolean
g_node_traverse_in_order (GNode		   *node,
			  GTraverseFlags    flags,
			  GNodeTraverseFunc func,
			  gpointer	    data)
{
  if (node->children)
    {
      GNode *child;
      GNode *current;
      
      child = node->children;
      current = child;
      child = current->next;
      
      if (g_node_traverse_in_order (current, flags, func, data))
	return TRUE;
      
      if ((flags & G_TRAVERSE_NON_LEAFS) &&
	  func (node, data))
	return TRUE;
      
      while (child)
	{
	  current = child;
	  child = current->next;
	  if (g_node_traverse_in_order (current, flags, func, data))
	    return TRUE;
	}
    }
  else if ((flags & G_TRAVERSE_LEAFS) &&
	   func (node, data))
    return TRUE;
  
  return FALSE;
}

static gboolean
g_node_depth_traverse_in_order (GNode		 *node,
				GTraverseFlags	  flags,
				guint		  depth,
				GNodeTraverseFunc func,
				gpointer	  data)
{
  if (node->children)
    {
      depth--;
      if (depth)
	{
	  GNode *child;
	  GNode *current;
	  
	  child = node->children;
	  current = child;
	  child = current->next;
	  
	  if (g_node_depth_traverse_in_order (current, flags, depth, func, data))
	    return TRUE;
	  
	  if ((flags & G_TRAVERSE_NON_LEAFS) &&
	      func (node, data))
	    return TRUE;
	  
	  while (child)
	    {
	      current = child;
	      child = current->next;
	      if (g_node_depth_traverse_in_order (current, flags, depth, func, data))
		return TRUE;
	    }
	}
      else if ((flags & G_TRAVERSE_NON_LEAFS) &&
	       func (node, data))
	return TRUE;
    }
  else if ((flags & G_TRAVERSE_LEAFS) &&
	   func (node, data))
    return TRUE;
  
  return FALSE;
}

static gboolean
g_node_traverse_level (GNode		 *node,
		       GTraverseFlags	  flags,
		       guint		  level,
		       GNodeTraverseFunc  func,
		       gpointer	          data,
		       gboolean          *more_levels)
{
  if (level == 0) 
    {
      if (node->children)
	{
	  *more_levels = TRUE;
	  return (flags & G_TRAVERSE_NON_LEAFS) && func (node, data);
	}
      else
	{
	  return (flags & G_TRAVERSE_LEAFS) && func (node, data);
	}
    }
  else 
    {
      node = node->children;
      
      while (node)
	{
	  if (g_node_traverse_level (node, flags, level - 1, func, data, more_levels))
	    return TRUE;

	  node = node->next;
	}
    }

  return FALSE;
}

static gboolean
g_node_depth_traverse_level (GNode             *node,
			     GTraverseFlags	flags,
			     guint		depth,
			     GNodeTraverseFunc  func,
			     gpointer	        data)
{
  guint level;
  gboolean more_levels;

  level = 0;  
  while (level != depth) 
    {
      more_levels = FALSE;
      if (g_node_traverse_level (node, flags, level, func, data, &more_levels))
	return TRUE;
      if (!more_levels)
	break;
      level++;
    }
  return FALSE;
}

/**
 * g_node_traverse:
 * @root: the root #GNode of the tree to traverse
 * @order: the order in which nodes are visited - %G_IN_ORDER, 
 *     %G_PRE_ORDER, %G_POST_ORDER, or %G_LEVEL_ORDER.
 * @flags: which types of children are to be visited, one of 
 *     %G_TRAVERSE_ALL, %G_TRAVERSE_LEAVES and %G_TRAVERSE_NON_LEAVES
 * @max_depth: the maximum depth of the traversal. Nodes below this
 *     depth will not be visited. If max_depth is -1 all nodes in 
 *     the tree are visited. If depth is 1, only the root is visited. 
 *     If depth is 2, the root and its children are visited. And so on.
 * @func: the function to call for each visited #GNode
 * @data: user data to pass to the function
 *
 * Traverses a tree starting at the given root #GNode.
 * It calls the given function for each node visited.
 * The traversal can be halted at any point by returning %TRUE from @func.
 */
/**
 * GTraverseFlags:
 * @G_TRAVERSE_LEAVES: only leaf nodes should be visited. This name has
 *                     been introduced in 2.6, for older version use
 *                     %G_TRAVERSE_LEAFS.
 * @G_TRAVERSE_NON_LEAVES: only non-leaf nodes should be visited. This
 *                         name has been introduced in 2.6, for older
 *                         version use %G_TRAVERSE_NON_LEAFS.
 * @G_TRAVERSE_ALL: all nodes should be visited.
 * @G_TRAVERSE_MASK: a mask of all traverse flags.
 * @G_TRAVERSE_LEAFS: identical to %G_TRAVERSE_LEAVES.
 * @G_TRAVERSE_NON_LEAFS: identical to %G_TRAVERSE_NON_LEAVES.
 *
 * Specifies which nodes are visited during several of the tree
 * functions, including g_node_traverse() and g_node_find().
 **/
/**
 * GNodeTraverseFunc:
 * @node: a #GNode.
 * @data: user data passed to g_node_traverse().
 * @Returns: %TRUE to stop the traversal.
 *
 * Specifies the type of function passed to g_node_traverse(). The
 * function is called with each of the nodes visited, together with the
 * user data passed to g_node_traverse(). If the function returns
 * %TRUE, then the traversal is stopped.
 **/
void
g_node_traverse (GNode		  *root,
		 GTraverseType	   order,
		 GTraverseFlags	   flags,
		 gint		   depth,
		 GNodeTraverseFunc func,
		 gpointer	   data)
{
  g_return_if_fail (root != NULL);
  g_return_if_fail (func != NULL);
  g_return_if_fail (order <= G_LEVEL_ORDER);
  g_return_if_fail (flags <= G_TRAVERSE_MASK);
  g_return_if_fail (depth == -1 || depth > 0);
  
  switch (order)
    {
    case G_PRE_ORDER:
      if (depth < 0)
	g_node_traverse_pre_order (root, flags, func, data);
      else
	g_node_depth_traverse_pre_order (root, flags, depth, func, data);
      break;
    case G_POST_ORDER:
      if (depth < 0)
	g_node_traverse_post_order (root, flags, func, data);
      else
	g_node_depth_traverse_post_order (root, flags, depth, func, data);
      break;
    case G_IN_ORDER:
      if (depth < 0)
	g_node_traverse_in_order (root, flags, func, data);
      else
	g_node_depth_traverse_in_order (root, flags, depth, func, data);
      break;
    case G_LEVEL_ORDER:
      g_node_depth_traverse_level (root, flags, depth, func, data);
      break;
    }
}

static gboolean
g_node_find_func (GNode	   *node,
		  gpointer  data)
{
  gpointer *d = data;
  
  if (*d != node->data)
    return FALSE;
  
  *(++d) = node;
  
  return TRUE;
}

/**
 * g_node_find:
 * @root: the root #GNode of the tree to search
 * @order: the order in which nodes are visited - %G_IN_ORDER, 
 *     %G_PRE_ORDER, %G_POST_ORDER, or %G_LEVEL_ORDER
 * @flags: which types of children are to be searched, one of 
 *     %G_TRAVERSE_ALL, %G_TRAVERSE_LEAVES and %G_TRAVERSE_NON_LEAVES
 * @data: the data to find
 *
 * Finds a #GNode in a tree.
 *
 * Returns: the found #GNode, or %NULL if the data is not found
 */
GNode*
g_node_find (GNode	    *root,
	     GTraverseType   order,
	     GTraverseFlags  flags,
	     gpointer        data)
{
  gpointer d[2];
  
  g_return_val_if_fail (root != NULL, NULL);
  g_return_val_if_fail (order <= G_LEVEL_ORDER, NULL);
  g_return_val_if_fail (flags <= G_TRAVERSE_MASK, NULL);
  
  d[0] = data;
  d[1] = NULL;
  
  g_node_traverse (root, order, flags, -1, g_node_find_func, d);
  
  return d[1];
}

static void
g_node_count_func (GNode	 *node,
		   GTraverseFlags flags,
		   guint	 *n)
{
  if (node->children)
    {
      GNode *child;
      
      if (flags & G_TRAVERSE_NON_LEAFS)
	(*n)++;
      
      child = node->children;
      while (child)
	{
	  g_node_count_func (child, flags, n);
	  child = child->next;
	}
    }
  else if (flags & G_TRAVERSE_LEAFS)
    (*n)++;
}

/**
 * g_node_n_nodes:
 * @root: a #GNode
 * @flags: which types of children are to be counted, one of 
 *     %G_TRAVERSE_ALL, %G_TRAVERSE_LEAVES and %G_TRAVERSE_NON_LEAVES
 *
 * Gets the number of nodes in a tree.
 *
 * Returns: the number of nodes in the tree
 */
guint
g_node_n_nodes (GNode	       *root,
		GTraverseFlags  flags)
{
  guint n = 0;
  
  g_return_val_if_fail (root != NULL, 0);
  g_return_val_if_fail (flags <= G_TRAVERSE_MASK, 0);
  
  g_node_count_func (root, flags, &n);
  
  return n;
}

/**
 * g_node_last_child:
 * @node: a #GNode (must not be %NULL)
 *
 * Gets the last child of a #GNode.
 *
 * Returns: the last child of @node, or %NULL if @node has no children
 */
GNode*
g_node_last_child (GNode *node)
{
  g_return_val_if_fail (node != NULL, NULL);
  
  node = node->children;
  if (node)
    while (node->next)
      node = node->next;
  
  return node;
}

/**
 * g_node_nth_child:
 * @node: a #GNode
 * @n: the index of the desired child
 *
 * Gets a child of a #GNode, using the given index.
 * The first child is at index 0. If the index is 
 * too big, %NULL is returned.
 *
 * Returns: the child of @node at index @n
 */
GNode*
g_node_nth_child (GNode *node,
		  guint	 n)
{
  g_return_val_if_fail (node != NULL, NULL);
  
  node = node->children;
  if (node)
    while ((n-- > 0) && node)
      node = node->next;
  
  return node;
}

/**
 * g_node_n_children:
 * @node: a #GNode
 *
 * Gets the number of children of a #GNode.
 *
 * Returns: the number of children of @node
 */
guint
g_node_n_children (GNode *node)
{
  guint n = 0;
  
  g_return_val_if_fail (node != NULL, 0);
  
  node = node->children;
  while (node)
    {
      n++;
      node = node->next;
    }
  
  return n;
}

/**
 * g_node_find_child:
 * @node: a #GNode
 * @flags: which types of children are to be searched, one of 
 *     %G_TRAVERSE_ALL, %G_TRAVERSE_LEAVES and %G_TRAVERSE_NON_LEAVES
 * @data: the data to find
 *
 * Finds the first child of a #GNode with the given data.
 *
 * Returns: the found child #GNode, or %NULL if the data is not found
 */
GNode*
g_node_find_child (GNode	  *node,
		   GTraverseFlags  flags,
		   gpointer	   data)
{
  g_return_val_if_fail (node != NULL, NULL);
  g_return_val_if_fail (flags <= G_TRAVERSE_MASK, NULL);
  
  node = node->children;
  while (node)
    {
      if (node->data == data)
	{
	  if (G_NODE_IS_LEAF (node))
	    {
	      if (flags & G_TRAVERSE_LEAFS)
		return node;
	    }
	  else
	    {
	      if (flags & G_TRAVERSE_NON_LEAFS)
		return node;
	    }
	}
      node = node->next;
    }
  
  return NULL;
}

/**
 * g_node_child_position:
 * @node: a #GNode
 * @child: a child of @node
 *
 * Gets the position of a #GNode with respect to its siblings.
 * @child must be a child of @node. The first child is numbered 0, 
 * the second 1, and so on.
 *
 * Returns: the position of @child with respect to its siblings
 */
gint
g_node_child_position (GNode *node,
		       GNode *child)
{
  guint n = 0;
  
  g_return_val_if_fail (node != NULL, -1);
  g_return_val_if_fail (child != NULL, -1);
  g_return_val_if_fail (child->parent == node, -1);
  
  node = node->children;
  while (node)
    {
      if (node == child)
	return n;
      n++;
      node = node->next;
    }
  
  return -1;
}

/**
 * g_node_child_index:
 * @node: a #GNode
 * @data: the data to find
 *
 * Gets the position of the first child of a #GNode 
 * which contains the given data.
 *
 * Returns: the index of the child of @node which contains 
 *     @data, or -1 if the data is not found
 */
gint
g_node_child_index (GNode    *node,
		    gpointer  data)
{
  guint n = 0;
  
  g_return_val_if_fail (node != NULL, -1);
  
  node = node->children;
  while (node)
    {
      if (node->data == data)
	return n;
      n++;
      node = node->next;
    }
  
  return -1;
}

/**
 * g_node_first_sibling:
 * @node: a #GNode
 *
 * Gets the first sibling of a #GNode.
 * This could possibly be the node itself.
 *
 * Returns: the first sibling of @node
 */
GNode*
g_node_first_sibling (GNode *node)
{
  g_return_val_if_fail (node != NULL, NULL);
  
  if (node->parent)
    return node->parent->children;
  
  while (node->prev)
    node = node->prev;
  
  return node;
}

/**
 * g_node_last_sibling:
 * @node: a #GNode
 *
 * Gets the last sibling of a #GNode.
 * This could possibly be the node itself.
 *
 * Returns: the last sibling of @node
 */
GNode*
g_node_last_sibling (GNode *node)
{
  g_return_val_if_fail (node != NULL, NULL);
  
  while (node->next)
    node = node->next;
  
  return node;
}

/**
 * g_node_children_foreach:
 * @node: a #GNode
 * @flags: which types of children are to be visited, one of 
 *     %G_TRAVERSE_ALL, %G_TRAVERSE_LEAVES and %G_TRAVERSE_NON_LEAVES
 * @func: the function to call for each visited node
 * @data: user data to pass to the function
 *
 * Calls a function for each of the children of a #GNode.
 * Note that it doesn't descend beneath the child nodes.
 */
/**
 * GNodeForeachFunc:
 * @node: a #GNode.
 * @data: user data passed to g_node_children_foreach().
 *
 * Specifies the type of function passed to g_node_children_foreach().
 * The function is called with each child node, together with the user
 * data passed to g_node_children_foreach().
 **/
void
g_node_children_foreach (GNode		  *node,
			 GTraverseFlags	   flags,
			 GNodeForeachFunc  func,
			 gpointer	   data)
{
  g_return_if_fail (node != NULL);
  g_return_if_fail (flags <= G_TRAVERSE_MASK);
  g_return_if_fail (func != NULL);
  
  node = node->children;
  while (node)
    {
      GNode *current;
      
      current = node;
      node = current->next;
      if (G_NODE_IS_LEAF (current))
	{
	  if (flags & G_TRAVERSE_LEAFS)
	    func (current, data);
	}
      else
	{
	  if (flags & G_TRAVERSE_NON_LEAFS)
	    func (current, data);
	}
    }
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The GNU Lesser General Public License (LGPLv3)


Written By
Software Developer
Argentina Argentina
System developer from Argentina.

Programmed in VB 5,6,.NET, C#, Java, PL-SQL, Transac-SQL, C, C++ and even some "calculator" language.

Love to build small, useful applications.
Usually building big and complicated apps based on solid, reliable components.

Hobbies: reading, photography, chess, paddle, running.

Comments and Discussions