Click here to Skip to main content
15,896,730 members
Articles / Artificial Intelligence / Machine Learning

Easy to use Wrapper (DLL) for Intel's OpenCV Library with Examples

Rate me:
Please Sign up or sign in to vote.
4.92/5 (64 votes)
3 Mar 2009CPOL19 min read 1.3M   38.8K   236  
The article describes an easy to use a wrapper for Intel's OpenCV lib with examples.
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//            Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of Intel Corporation may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "_ml.h"

CvNormalBayesClassifier::CvNormalBayesClassifier()
{
    var_count = var_all = 0;
    var_idx = 0;
    cls_labels = 0;
    count = 0;
    sum = 0;
    productsum = 0;
    avg = 0;
    inv_eigen_values = 0;
    cov_rotate_mats = 0;
    c = 0;
    default_model_name = "my_nb";
}


void CvNormalBayesClassifier::clear()
{
    if( cls_labels )
    {
        for( int cls = 0; cls < cls_labels->cols; cls++ )
        {
            cvReleaseMat( &count[cls] );
            cvReleaseMat( &sum[cls] );
            cvReleaseMat( &productsum[cls] );
            cvReleaseMat( &avg[cls] );
            cvReleaseMat( &inv_eigen_values[cls] );
            cvReleaseMat( &cov_rotate_mats[cls] );
        }
    }
    
    cvReleaseMat( &cls_labels );
    cvReleaseMat( &var_idx );
    cvReleaseMat( &c );
    cvFree( &count );
}


CvNormalBayesClassifier::~CvNormalBayesClassifier()
{
    clear();
}


CvNormalBayesClassifier::CvNormalBayesClassifier(
    const CvMat* _train_data, const CvMat* _responses,
    const CvMat* _var_idx, const CvMat* _sample_idx )
{
    var_count = var_all = 0;
    var_idx = 0;
    cls_labels = 0;
    count = 0;
    sum = 0;
    productsum = 0;
    avg = 0;
    inv_eigen_values = 0;
    cov_rotate_mats = 0;
    c = 0;
    default_model_name = "my_nb";

    train( _train_data, _responses, _var_idx, _sample_idx );
}


bool CvNormalBayesClassifier::train( const CvMat* _train_data, const CvMat* _responses,
                            const CvMat* _var_idx, const CvMat* _sample_idx, bool update )
{
    const float min_variation = FLT_EPSILON;
    bool result = false;
    CvMat* responses   = 0;
    const float** train_data = 0;
    CvMat* __cls_labels = 0;
    CvMat* __var_idx = 0;
    CvMat* cov = 0;
    
    CV_FUNCNAME( "CvNormalBayesClassifier::train" );

    __BEGIN__;

    int cls, nsamples = 0, _var_count = 0, _var_all = 0, nclasses = 0;
    int s, c1, c2;
    const int* responses_data;
    
    CV_CALL( cvPrepareTrainData( 0,
        _train_data, CV_ROW_SAMPLE, _responses, CV_VAR_CATEGORICAL,
        _var_idx, _sample_idx, false, &train_data,
        &nsamples, &_var_count, &_var_all, &responses,
        &__cls_labels, &__var_idx ));

    if( !update )
    {
        const size_t mat_size = sizeof(CvMat*);
        size_t data_size;

        clear();

        var_idx = __var_idx;
        cls_labels = __cls_labels;
        __var_idx = __cls_labels = 0;
        var_count = _var_count;
        var_all = _var_all;

        nclasses = cls_labels->cols;
        data_size = nclasses*6*mat_size;

        CV_CALL( count = (CvMat**)cvAlloc( data_size ));
        memset( count, 0, data_size );

        sum             = count      + nclasses;
        productsum      = sum        + nclasses;
        avg             = productsum + nclasses;
        inv_eigen_values= avg        + nclasses;
        cov_rotate_mats = inv_eigen_values         + nclasses;
        
        CV_CALL( c = cvCreateMat( 1, nclasses, CV_64FC1 ));

        for( cls = 0; cls < nclasses; cls++ )
        {
            CV_CALL(count[cls]            = cvCreateMat( 1, var_count, CV_32SC1 ));
            CV_CALL(sum[cls]              = cvCreateMat( 1, var_count, CV_64FC1 ));
            CV_CALL(productsum[cls]       = cvCreateMat( var_count, var_count, CV_64FC1 ));
            CV_CALL(avg[cls]              = cvCreateMat( 1, var_count, CV_64FC1 ));
            CV_CALL(inv_eigen_values[cls] = cvCreateMat( 1, var_count, CV_64FC1 ));
            CV_CALL(cov_rotate_mats[cls]  = cvCreateMat( var_count, var_count, CV_64FC1 ));
            CV_CALL(cvZero( count[cls] ));
            CV_CALL(cvZero( sum[cls] ));
            CV_CALL(cvZero( productsum[cls] ));
            CV_CALL(cvZero( avg[cls] ));
            CV_CALL(cvZero( inv_eigen_values[cls] ));
            CV_CALL(cvZero( cov_rotate_mats[cls] ));
        }
    }
    else
    {
        // check that the new training data has the same dimensionality etc.
        if( _var_count != var_count || _var_all != var_all || _var_idx && !var_idx || !_var_idx && !var_idx ||
            _var_idx && var_idx && cvNorm(_var_idx,var_idx,CV_C) > DBL_EPSILON )
            CV_ERROR( CV_StsBadArg,
            "The new training data is inconsistent with the original training data" );

        if( cls_labels->cols != __cls_labels->cols ||
            cvNorm(cls_labels, __cls_labels, CV_C) > DBL_EPSILON )
            CV_ERROR( CV_StsNotImplemented,
            "In the current implementation the new training data must have absolutely "
            "the same set of class labels as used in the original training data" );

        nclasses = cls_labels->cols;
    }

    responses_data = responses->data.i;
    CV_CALL( cov = cvCreateMat( _var_count, _var_count, CV_64FC1 ));

    /* process train data (count, sum , productsum) */
    for( s = 0; s < nsamples; s++ )
    {
        cls = responses_data[s];
        int* count_data = count[cls]->data.i;
        double* sum_data = sum[cls]->data.db;
        double* prod_data = productsum[cls]->data.db;
        const float* train_vec = train_data[s];
        
        for( c1 = 0; c1 < _var_count; c1++, prod_data += _var_count )
        {
            double val1 = train_vec[c1];
            sum_data[c1] += val1;
            count_data[c1]++;
            for( c2 = c1; c2 < _var_count; c2++ )
                prod_data[c2] += train_vec[c2]*val1;
        }
    }

    /* calculate avg, covariance matrix, c */
    for( cls = 0; cls < nclasses; cls++ )
    {
        double det = 1;
        int i, j;
        CvMat* w = inv_eigen_values[cls];
        int* count_data = count[cls]->data.i;
        double* avg_data = avg[cls]->data.db;
        double* sum1 = sum[cls]->data.db;

        cvCompleteSymm( productsum[cls], 0 );

        for( j = 0; j < _var_count; j++ )
        {
            int n = count_data[j];
            avg_data[j] = n ? sum1[j] / n : 0.;
        }

        count_data = count[cls]->data.i;
        avg_data = avg[cls]->data.db;
        sum1 = sum[cls]->data.db;

        for( i = 0; i < _var_count; i++ )
        {
            double* avg2_data = avg[cls]->data.db;
            double* sum2 = sum[cls]->data.db;
            double* prod_data = productsum[cls]->data.db + i*_var_count;
            double* cov_data = cov->data.db + i*_var_count;
            double s1val = sum1[j];
            double avg1 = avg_data[i];
            int count = count_data[i];

            for( j = 0; j <= i; j++ )
            {
                double avg2 = avg2_data[j];
                double cov_val = prod_data[j] - avg1 * sum2[j] - avg2 * s1val + avg1 * avg2 * count;
                cov_val = (count > 1) ? cov_val / (count - 1) : cov_val;
                cov_data[j] = cov_val;
            }
        }

        CV_CALL( cvCompleteSymm( cov, 1 ));
        CV_CALL( cvSVD( cov, w, cov_rotate_mats[cls], 0, CV_SVD_U_T ));
        CV_CALL( cvMaxS( w, min_variation, w ));
        for( j = 0; j < _var_count; j++ )
            det *= w->data.db[j];

        CV_CALL( cvDiv( NULL, w, w ));
        c->data.db[cls] = log( det );
    }

    result = true;

    __END__;

    if( !result || cvGetErrStatus() < 0 )
        clear();

    cvReleaseMat( &cov );
    cvReleaseMat( &__cls_labels );
    cvReleaseMat( &__var_idx );
    cvFree( &train_data );

    return result;
}


float CvNormalBayesClassifier::predict( const CvMat* samples, CvMat* results ) const
{
    float value = 0;
    void* buffer = 0;
    int allocated_buffer = 0;

    CV_FUNCNAME( "CvNormalBayesClassifier::predict" );
    
    __BEGIN__;

    int i, j, k, cls = -1, _var_count, nclasses;
    double opt = FLT_MAX;
    CvMat diff;
    int rtype = 0, rstep = 0, size;
    const int* vidx = 0;

    nclasses = cls_labels->cols;
    _var_count = avg[0]->cols;

    if( !CV_IS_MAT(samples) || CV_MAT_TYPE(samples->type) != CV_32FC1 || samples->cols != var_all )
        CV_ERROR( CV_StsBadArg,
        "The input samples must be 32f matrix with the number of columns = var_all" );

    if( samples->rows > 1 && !results )
        CV_ERROR( CV_StsNullPtr,
        "When the number of input samples is >1, the output vector of results must be passed" );

    if( results )
    {
        if( !CV_IS_MAT(results) || CV_MAT_TYPE(results->type) != CV_32FC1 &&
        CV_MAT_TYPE(results->type) != CV_32SC1 ||
        results->cols != 1 && results->rows != 1 ||
        results->cols + results->rows - 1 != samples->rows )
        CV_ERROR( CV_StsBadArg, "The output array must be integer or floating-point vector "
        "with the number of elements = number of rows in the input matrix" );

        rtype = CV_MAT_TYPE(results->type);
        rstep = CV_IS_MAT_CONT(results->type) ? 1 : results->step/CV_ELEM_SIZE(rtype);
    }
    
    if( var_idx )
        vidx = var_idx->data.i;

// allocate memory and initializing headers for calculating
    size = sizeof(double) * (nclasses + var_count);
    if( size <= CV_MAX_LOCAL_SIZE )
        buffer = cvStackAlloc( size );
    else
    {
        CV_CALL( buffer = cvAlloc( size ));
        allocated_buffer = 1;
    }
    
    diff = cvMat( 1, var_count, CV_64FC1, buffer );

    for( k = 0; k < samples->rows; k++ )
    {
        int ival;
        
        for( i = 0; i < nclasses; i++ )
        {
            double cur = c->data.db[i];
            CvMat* u = cov_rotate_mats[i];
            CvMat* w = inv_eigen_values[i];
            const double* avg_data = avg[i]->data.db;
            const float* x = (const float*)(samples->data.ptr + samples->step*k);

            // cov = u w u'  -->  cov^(-1) = u w^(-1) u'
            for( j = 0; j < _var_count; j++ )
                diff.data.db[j] = avg_data[j] - x[vidx ? vidx[j] : j];

            CV_CALL(cvGEMM( &diff, u, 1, 0, 0, &diff, CV_GEMM_B_T ));
            for( j = 0; j < _var_count; j++ )
            {
                double d = diff.data.db[j];
                cur += d*d*w->data.db[j];
            }

            if( cur < opt )
            {
                cls = i;
                opt = cur;
            }
            /* probability = exp( -0.5 * cur ) */
        }

        ival = cls_labels->data.i[cls];
        if( results )
        {
            if( rtype == CV_32SC1 )
                results->data.i[k*rstep] = ival;
            else
                results->data.fl[k*rstep] = (float)ival;
        }
        if( k == 0 )
            value = (float)ival;

        /*if( _probs )
        {
            CV_CALL( cvConvertScale( &expo, &expo, -0.5 ));
            CV_CALL( cvExp( &expo, &expo ));
            if( _probs->cols == 1 )
                CV_CALL( cvReshape( &expo, &expo, 1, nclasses ));
            CV_CALL( cvConvertScale( &expo, _probs, 1./cvSum( &expo ).val[0] ));
        }*/
    }

    __END__;

    if( allocated_buffer )
        cvFree( &buffer );

    return value;
}


void CvNormalBayesClassifier::write( CvFileStorage* fs, const char* name )
{
    CV_FUNCNAME( "CvNormalBayesClassifier::write" );

    __BEGIN__;

    int nclasses, i;

    nclasses = cls_labels->cols;

    cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_ML_NBAYES );

    CV_CALL( cvWriteInt( fs, "var_count", var_count ));
    CV_CALL( cvWriteInt( fs, "var_all", var_all ));

    if( var_idx )
        CV_CALL( cvWrite( fs, "var_idx", var_idx ));
    CV_CALL( cvWrite( fs, "cls_labels", cls_labels ));

    CV_CALL( cvStartWriteStruct( fs, "count", CV_NODE_SEQ ));
    for( i = 0; i < nclasses; i++ )
        CV_CALL( cvWrite( fs, NULL, count[i] ));
    CV_CALL( cvEndWriteStruct( fs ));

    CV_CALL( cvStartWriteStruct( fs, "sum", CV_NODE_SEQ ));
    for( i = 0; i < nclasses; i++ )
        CV_CALL( cvWrite( fs, NULL, sum[i] ));
    CV_CALL( cvEndWriteStruct( fs ));
 
    CV_CALL( cvStartWriteStruct( fs, "productsum", CV_NODE_SEQ ));
    for( i = 0; i < nclasses; i++ )
        CV_CALL( cvWrite( fs, NULL, productsum[i] ));
    CV_CALL( cvEndWriteStruct( fs ));

    CV_CALL( cvStartWriteStruct( fs, "avg", CV_NODE_SEQ ));
    for( i = 0; i < nclasses; i++ )
        CV_CALL( cvWrite( fs, NULL, avg[i] ));
    CV_CALL( cvEndWriteStruct( fs ));

    CV_CALL( cvStartWriteStruct( fs, "inv_eigen_values", CV_NODE_SEQ ));
    for( i = 0; i < nclasses; i++ )
        CV_CALL( cvWrite( fs, NULL, inv_eigen_values[i] ));
    CV_CALL( cvEndWriteStruct( fs ));

    CV_CALL( cvStartWriteStruct( fs, "cov_rotate_mats", CV_NODE_SEQ ));
    for( i = 0; i < nclasses; i++ )
        CV_CALL( cvWrite( fs, NULL, cov_rotate_mats[i] ));
    CV_CALL( cvEndWriteStruct( fs ));

    CV_CALL( cvWrite( fs, "c", c ));

    cvEndWriteStruct( fs );

    __END__;
}


void CvNormalBayesClassifier::read( CvFileStorage* fs, CvFileNode* root_node )
{
    bool ok = false;
    CV_FUNCNAME( "CvNormalBayesClassifier::read" );

    __BEGIN__;

    int nclasses, i;
    size_t data_size;
    CvFileNode* node;
    CvSeq* seq;
    CvSeqReader reader;
    
    clear();

    CV_CALL( var_count = cvReadIntByName( fs, root_node, "var_count", -1 ));
    CV_CALL( var_all = cvReadIntByName( fs, root_node, "var_all", -1 ));
    CV_CALL( var_idx = (CvMat*)cvReadByName( fs, root_node, "var_idx" ));
    CV_CALL( cls_labels = (CvMat*)cvReadByName( fs, root_node, "cls_labels" ));
    if( !cls_labels )
        CV_ERROR( CV_StsParseError, "No \"cls_labels\" in NBayes classifier" );
    if( cls_labels->cols < 1 )
        CV_ERROR( CV_StsBadArg, "Number of classes is less 1" );
    if( var_count <= 0 )
        CV_ERROR( CV_StsParseError,
        "The field \"var_count\" of NBayes classifier is missing" );
    nclasses = cls_labels->cols;

    data_size = nclasses*6*sizeof(CvMat*);
    CV_CALL( count = (CvMat**)cvAlloc( data_size ));
    memset( count, 0, data_size );

    sum = count + nclasses;
    productsum  = sum  + nclasses;
    avg = productsum + nclasses;
    inv_eigen_values = avg + nclasses;
    cov_rotate_mats = inv_eigen_values + nclasses;

    CV_CALL( node = cvGetFileNodeByName( fs, root_node, "count" ));
    seq = node->data.seq;
    if( !CV_NODE_IS_SEQ(node->tag) || seq->total != nclasses)
        CV_ERROR( CV_StsBadArg, "" );
    CV_CALL( cvStartReadSeq( seq, &reader, 0 ));
    for( i = 0; i < nclasses; i++ )
    {
        CV_CALL( count[i] = (CvMat*)cvRead( fs, (CvFileNode*)reader.ptr ));
        CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
    }

    CV_CALL( node = cvGetFileNodeByName( fs, root_node, "sum" ));
    seq = node->data.seq;
    if( !CV_NODE_IS_SEQ(node->tag) || seq->total != nclasses)
        CV_ERROR( CV_StsBadArg, "" );
    CV_CALL( cvStartReadSeq( seq, &reader, 0 ));
    for( i = 0; i < nclasses; i++ )
    {
        CV_CALL( sum[i] = (CvMat*)cvRead( fs, (CvFileNode*)reader.ptr ));
        CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
    }

    CV_CALL( node = cvGetFileNodeByName( fs, root_node, "productsum" ));
    seq = node->data.seq;
    if( !CV_NODE_IS_SEQ(node->tag) || seq->total != nclasses)
        CV_ERROR( CV_StsBadArg, "" );
    CV_CALL( cvStartReadSeq( seq, &reader, 0 ));
    for( i = 0; i < nclasses; i++ )
    {
        CV_CALL( productsum[i] = (CvMat*)cvRead( fs, (CvFileNode*)reader.ptr ));
        CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
    }

    CV_CALL( node = cvGetFileNodeByName( fs, root_node, "avg" ));
    seq = node->data.seq;
    if( !CV_NODE_IS_SEQ(node->tag) || seq->total != nclasses)
        CV_ERROR( CV_StsBadArg, "" );
    CV_CALL( cvStartReadSeq( seq, &reader, 0 ));
    for( i = 0; i < nclasses; i++ )
    {
        CV_CALL( avg[i] = (CvMat*)cvRead( fs, (CvFileNode*)reader.ptr ));
        CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
    }

    CV_CALL( node = cvGetFileNodeByName( fs, root_node, "inv_eigen_values" ));
    seq = node->data.seq;
    if( !CV_NODE_IS_SEQ(node->tag) || seq->total != nclasses)
        CV_ERROR( CV_StsBadArg, "" );
    CV_CALL( cvStartReadSeq( seq, &reader, 0 ));
    for( i = 0; i < nclasses; i++ )
    {
        CV_CALL( inv_eigen_values[i] = (CvMat*)cvRead( fs, (CvFileNode*)reader.ptr ));
        CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
    }

    CV_CALL( node = cvGetFileNodeByName( fs, root_node, "cov_rotate_mats" ));
    seq = node->data.seq;
    if( !CV_NODE_IS_SEQ(node->tag) || seq->total != nclasses)
        CV_ERROR( CV_StsBadArg, "" );
    CV_CALL( cvStartReadSeq( seq, &reader, 0 ));
    for( i = 0; i < nclasses; i++ )
    {
        CV_CALL( cov_rotate_mats[i] = (CvMat*)cvRead( fs, (CvFileNode*)reader.ptr ));
        CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
    }

    CV_CALL( c = (CvMat*)cvReadByName( fs, root_node, "c" ));

    ok = true;

    __END__;

    if( !ok )
        clear();
}

/* End of file. */

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Systems Engineer self employed
Germany Germany
This member has not yet provided a Biography. Assume it's interesting and varied, and probably something to do with programming.

Comments and Discussions