Click here to Skip to main content
15,892,072 members
Articles / Desktop Programming / WPF

Building an Extensible Application with MEF, WPF, and MVVM

Rate me:
Please Sign up or sign in to vote.
4.88/5 (45 votes)
15 Nov 2009LGPL316 min read 302.9K   7.4K   185  
An article for anyone interested in how to build an extensible application using WPF and the Model-View-ViewModel pattern.
#region MIT License
/*
 * Copyright (c) 2005-2008 Jonathan Mark Porter. http://physics2d.googlepages.com/
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy 
 * of this software and associated documentation files (the "Software"), to deal 
 * in the Software without restriction, including without limitation the rights to 
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of 
 * the Software, and to permit persons to whom the Software is furnished to do so, 
 * subject to the following conditions:
 * 
 * The above copyright notice and this permission notice shall be 
 * included in all copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
 * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
 * PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */
#endregion



// because this code was basically copied from Box2D
// Copyright (c) 2006 Erin Catto http://www.gphysics.com
#if UseDouble
using Scalar = System.Double;
#else
using Scalar = System.Single;
#endif
using System;
using System.Collections.ObjectModel;

using AdvanceMath;






namespace Physics2DDotNet.Joints
{
    /// <summary>
    /// A joint that makes a single Body Pivot around an Anchor.
    /// </summary>
    [Serializable]
    public sealed class FixedHingeJoint : Joint, Solvers.ISequentialImpulsesJoint
    {
        Solvers.SequentialImpulsesSolver solver;
        Body body;


        Matrix2x2 M;
        Vector2D localAnchor1;
        Vector2D anchor;
        Vector2D r1;
        Vector2D bias;
        Vector2D accumulatedImpulse;
        Scalar biasFactor;
        Scalar softness;
        Scalar distanceTolerance;


        public FixedHingeJoint(Body body, Vector2D anchor, Lifespan lifetime)
            : base(lifetime)
        {
            if (body == null) { throw new ArgumentNullException("body"); }
            this.body = body;
            this.anchor = anchor;
            body.ApplyPosition();
            Vector2D.Transform(ref body.Matrices.ToBody, ref anchor, out this.localAnchor1);
            this.softness = 0.001f;
            this.biasFactor = 0.2f;
            this.distanceTolerance = Scalar.PositiveInfinity;
        }


        public Vector2D Anchor
        {
            get { return anchor; }
            set { anchor = value; }
        }

        public Scalar BiasFactor
        {
            get { return biasFactor; }
            set { biasFactor = value; }
        }
        public Scalar Softness
        {
            get { return softness; }
            set { softness = value; }
        }
        /// <summary>
        /// The distance the joint can stretch before breaking. 
        /// </summary>
        public Scalar DistanceTolerance
        {
            get { return distanceTolerance; }
            set
            {
                if (value <= 0) { throw new ArgumentOutOfRangeException("value"); }
                distanceTolerance = value;
            }
        }
        public override ReadOnlyCollection<Body> Bodies
        {
            get { return new ReadOnlyCollection<Body>(new Body[1] { body }); }
        }
        public override void CheckFrozen()
        {
            
        }

        protected override void OnAdded(EventArgs e)
        {
            this.solver = (Solvers.SequentialImpulsesSolver)Engine.Solver;
            base.OnAdded(e);
        }
        void Solvers.ISequentialImpulsesJoint.PreStep(TimeStep step)
        {

            Scalar mass1Inv = body.Mass.MassInv;
            Scalar inertia1Inv = body.Mass.MomentOfInertiaInv;

            // Pre-compute anchors, mass matrix, and bias.

            Vector2D.TransformNormal(ref body.Matrices.ToWorld, ref localAnchor1, out r1);
            
            // deltaV = deltaV0 + K * impulse
            // invM = [(1/m1 + 1/m2) * eye(2) - skew(r1) * invI1 * skew(r1) - skew(r2) * invI2 * skew(r2)]
            //      = [1/m1+1/m2     0    ] + invI1 * [r1.y*r1.y -r1.x*r1.y] + invI2 * [r1.y*r1.y -r1.x*r1.y]
            //        [    0     1/m1+1/m2]           [-r1.x*r1.y r1.x*r1.x]           [-r1.x*r1.y r1.x*r1.x]

            Matrix2x2 K;
            K.m00 = mass1Inv;
            K.m11 = mass1Inv;

            K.m00 += inertia1Inv * r1.Y * r1.Y;
            K.m01 = -inertia1Inv * r1.X * r1.Y;
            K.m10 = -inertia1Inv * r1.X * r1.Y;
            K.m11 += inertia1Inv * r1.X * r1.X;

            K.m00 += softness;
            K.m11 += softness;

            Matrix2x2.Invert(ref K, out M);


            Vector2D dp;
            Vector2D.Add(ref body.State.Position.Linear, ref r1, out dp);
            Vector2D.Subtract(ref anchor, ref dp, out dp);
           
            if (!Scalar.IsPositiveInfinity(distanceTolerance) &&
                dp.MagnitudeSq > distanceTolerance * distanceTolerance)
            {
                this.Lifetime.IsExpired = true;
            }

            if (solver.PositionCorrection)
            {
                //bias = -0.1f * dtInv * dp;
                Scalar flt = -biasFactor * step.DtInv;
                Vector2D.Multiply(ref dp, ref flt, out bias);
            }
            else
            {
                bias = Vector2D.Zero;
            }
            if (solver.WarmStarting)
            {
                PhysicsHelper.SubtractImpulse(
                    ref body.State.Velocity, ref accumulatedImpulse,
                    ref r1, ref mass1Inv, ref inertia1Inv);
            }
            else
            {
                accumulatedImpulse = Vector2D.Zero;
            }
            body.ApplyProxy();

        }
        void Solvers.ISequentialImpulsesJoint.ApplyImpulse()
        {
            Scalar mass1Inv = body.Mass.MassInv;
            Scalar inertia1Inv = body.Mass.MomentOfInertiaInv;

            Vector2D dv;
            PhysicsHelper.GetRelativeVelocity(ref body.State.Velocity, ref r1, out dv);


            Vector2D impulse;
            impulse.X = bias.X - dv.X - softness * accumulatedImpulse.X;
            impulse.Y = bias.Y - dv.Y - softness * accumulatedImpulse.Y;
            Vector2D.Transform(ref  M, ref impulse, out impulse);
            //impulse = M * (bias - dv - softness * P);


            PhysicsHelper.SubtractImpulse(
                ref body.State.Velocity, ref impulse,
                ref r1, ref mass1Inv, ref inertia1Inv);


            Vector2D.Add(ref accumulatedImpulse, ref impulse, out accumulatedImpulse);
            body.ApplyProxy();

        }
    }
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The GNU Lesser General Public License (LGPLv3)


Written By
Engineer
Canada Canada
By day I'm a Professional Engineer, doing .NET, VB6, SQL Server, and Automation (Ladder Logic, etc.) programming.

On weekends I write and maintain an open source extensible application framework called SoapBox Core.

In the evenings I provide front line technical support for moms4mom.com and I help out with administrative tasks (like formatting stuff). I also pitch in as a moderator from time to time.

You can follow me on twitter.

Comments and Discussions