Click here to Skip to main content
15,895,777 members
Articles / Programming Languages / C#

Resolving Symbolic References in a CodeDOM (Part 7)

Rate me:
Please Sign up or sign in to vote.
4.75/5 (6 votes)
2 Dec 2012CDDL12 min read 19.4K   510   14  
Resolving symbolic references in a CodeDOM.
// The Nova Project by Ken Beckett.
// Copyright (C) 2007-2012 Inevitable Software, all rights reserved.
// Released under the Common Development and Distribution License, CDDL-1.0: http://opensource.org/licenses/cddl1.php

using System;

using Nova.Parsing;

namespace Nova.CodeDOM
{
    /// <summary>
    /// Negates an <see cref="Expression"/>.
    /// </summary>
    public class Negative : PreUnaryOperator
    {
        #region /* CONSTANTS */

        /// <summary>
        /// The internal name of the operator.
        /// </summary>
        public const string InternalName = NamePrefix + "UnaryNegation";

        #endregion

        #region /* CONSTRUCTORS */

        /// <summary>
        /// Create a <see cref="Negative"/> operator.
        /// </summary>
        public Negative(Expression expression)
            : base(expression)
        { }

        #endregion

        #region /* PROPERTIES */

        /// <summary>
        /// The symbol associated with the operator.
        /// </summary>
        public override string Symbol
        {
            get { return ParseToken; }
        }

        #endregion

        #region /* METHODS */

        /// <summary>
        /// The internal name of the <see cref="UnaryOperator"/>.
        /// </summary>
        public override string GetInternalName()
        {
            return InternalName;
        }

        #endregion

        #region /* PARSING */

        /// <summary>
        /// The token used to parse the code object.
        /// </summary>
        public const string ParseToken = Subtract.ParseToken;

        /// <summary>
        /// The precedence of the operator.
        /// </summary>
        public const int Precedence = 200;

        /// <summary>
        /// True if the operator is left-associative, or false if it's right-associative.
        /// </summary>
        public const bool LeftAssociative = true;

        internal static new void AddParsePoints()
        {
            // Use a parse-priority of 100 (Subtract uses 0)
            Parser.AddOperatorParsePoint(ParseToken, 100, Precedence, LeftAssociative, true, Parse);
        }

        /// <summary>
        /// Parse a <see cref="Negative"/> operator.
        /// </summary>
        public static Negative Parse(Parser parser, CodeObject parent, ParseFlags flags)
        {
            return new Negative(parser, parent);
        }

        protected Negative(Parser parser, CodeObject parent)
            : base(parser, parent, false)
        { }

        /// <summary>
        /// Get the precedence of the operator.
        /// </summary>
        public override int GetPrecedence()
        {
            return Precedence;
        }

        #endregion

        #region /* RESOLVING */

        /// <summary>
        /// Evaluate the type of the <see cref="Expression"/>.
        /// </summary>
        /// <returns>The resulting <see cref="TypeRef"/> or <see cref="UnresolvedRef"/>.</returns>
        public override TypeRefBase EvaluateType(bool withoutConstants)
        {
            // If we have a reference to an overloaded operator declaration, use its return type
            if (_operatorRef is OperatorRef)
                return ((OperatorRef)_operatorRef).GetReturnType();

            // Determine the type of the expression
            TypeRefBase typeRefBase = _expression.EvaluateType(withoutConstants);
            if (typeRefBase is TypeRef)
            {
                // Handle a constant
                if (typeRefBase.IsConst)
                {
                    object result = EvaluateConstant(typeRefBase.GetConstantValue());
                    return (result != null ? new TypeRef(result) : typeRefBase);
                }

                // String, boolean, or enum operands aren't supported by default, but we'll just return the
                // unchanged type instead of 'object'.

                // Do unary numeric promotions
                if (typeRefBase.IsSameRef(TypeRef.ShortRef) || typeRefBase.IsSameRef(TypeRef.UShortRef)
                    || typeRefBase.IsSameRef(TypeRef.SByteRef) || typeRefBase.IsSameRef(TypeRef.ByteRef) || typeRefBase.IsSameRef(TypeRef.CharRef))
                    return TypeRef.IntRef;
                if (typeRefBase.IsSameRef(TypeRef.UIntRef))
                    return TypeRef.LongRef;
            }

            // By default, the type is unchanged
            return typeRefBase;
        }

        /// <summary>
        /// Make a constant object negative.
        /// Supported types are: string, bool, enum, decimal, double, float, ulong, long, uint, int, ushort, short, char, byte, sbyte.
        /// </summary>
        /// <returns>
        /// The result, using the appropriate result type, including promoting smaller types to int. Returns null if the operation is invalid.
        /// </returns>
        protected override object EvaluateConstant(object constant)
        {
            // Null, string, boolean, or enum operands aren't supported
            if (constant == null || constant is string || constant is bool || constant is EnumConstant)
                return null;  // The operation is invalid

            // Do unary numeric promotions
            if (constant is decimal)
                return -(decimal)constant;
            if (constant is double)
                return -(double)constant;
            if (constant is float)
                return -(float)constant;
            if (constant is ulong)
            {
                // Special case for long.MinValue
                if ((ulong)constant == 9223372036854775808)
                    return -9223372036854775808;
                return null;  // The operation is invalid
            }
            if (constant is long)
                return -(long)constant;
            if (constant is uint)
            {
                // Special case for int.MinValue
                if ((uint)constant == 2147483648)
                    return -2147483648;
                return -Convert.ToInt64(constant);
            }
            if (constant is int)
                return -(int)constant;
            // All other cases (with smaller integral types) get promoted to ints
            return -Convert.ToInt32(constant);
        }

        #endregion
    }
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Common Development and Distribution License (CDDL)


Written By
Software Developer (Senior)
United States United States
I've been writing software since the late 70's, currently focusing mainly on C#.NET. I also like to travel around the world, and I own a Chocolate Factory (sadly, none of my employees are oompa loompas).

Comments and Discussions