Click here to Skip to main content
15,885,030 members
Articles / Database Development / SQL Server

DarkSide SQL Mini Version 1, The embedded database

Rate me:
Please Sign up or sign in to vote.
3.50/5 (27 votes)
23 Mar 2006BSD2 min read 156.7K   2.9K   57  
An embedded database library in C++.
/*-
 * See the file LICENSE for redistribution information.
 *
 * Copyright (c) 1996-2002
 *	Sleepycat Software.  All rights reserved.
 *
 * $Id: db_page.h,v 11.52 2002/09/13 21:24:04 bostic Exp $
 */

#ifndef _DB_PAGE_H_
#define	_DB_PAGE_H_

#if defined(__cplusplus)
extern "C" {
#endif

/*
 * DB page formats.
 *
 * !!!
 * This implementation requires that values within the following structures
 * NOT be padded -- note, ANSI C permits random padding within structures.
 * If your compiler pads randomly you can just forget ever making DB run on
 * your system.  In addition, no data type can require larger alignment than
 * its own size, e.g., a 4-byte data element may not require 8-byte alignment.
 *
 * Note that key/data lengths are often stored in db_indx_t's -- this is
 * not accidental, nor does it limit the key/data size.  If the key/data
 * item fits on a page, it's guaranteed to be small enough to fit into a
 * db_indx_t, and storing it in one saves space.
 */

#define	PGNO_INVALID	0	/* Invalid page number in any database. */
#define	PGNO_BASE_MD	0	/* Base database: metadata page number. */

/* Page types. */
#define	P_INVALID	0	/* Invalid page type. */
#define	__P_DUPLICATE	1	/* Duplicate. DEPRECATED in 3.1 */
#define	P_HASH		2	/* Hash. */
#define	P_IBTREE	3	/* Btree internal. */
#define	P_IRECNO	4	/* Recno internal. */
#define	P_LBTREE	5	/* Btree leaf. */
#define	P_LRECNO	6	/* Recno leaf. */
#define	P_OVERFLOW	7	/* Overflow. */
#define	P_HASHMETA	8	/* Hash metadata page. */
#define	P_BTREEMETA	9	/* Btree metadata page. */
#define	P_QAMMETA	10	/* Queue metadata page. */
#define	P_QAMDATA	11	/* Queue data page. */
#define	P_LDUP		12	/* Off-page duplicate leaf. */
#define	P_PAGETYPE_MAX	13

/*
 * When we create pages in mpool, we ask mpool to clear some number of bytes
 * in the header.  This number must be at least as big as the regular page
 * headers and cover enough of the btree and hash meta-data pages to obliterate
 * the page type.
 */
#define	DB_PAGE_DB_LEN		32
#define	DB_PAGE_QUEUE_LEN	0

/************************************************************************
 GENERIC METADATA PAGE HEADER
 *
 * !!!
 * The magic and version numbers have to be in the same place in all versions
 * of the metadata page as the application may not have upgraded the database.
 ************************************************************************/
typedef struct _dbmeta33 {
	DB_LSN	  lsn;		/* 00-07: LSN. */
	db_pgno_t pgno;		/* 08-11: Current page number. */
	u_int32_t magic;	/* 12-15: Magic number. */
	u_int32_t version;	/* 16-19: Version. */
	u_int32_t pagesize;	/* 20-23: Pagesize. */
	u_int8_t  encrypt_alg;	/*    24: Encryption algorithm. */
	u_int8_t  type;		/*    25: Page type. */
#define	DBMETA_CHKSUM		0x01
	u_int8_t  metaflags;	/* 26: Meta-only flags */
	u_int8_t  unused1;	/* 27: Unused. */
	u_int32_t free;		/* 28-31: Free list page number. */
	db_pgno_t last_pgno;	/* 32-35: Page number of last page in db. */
	u_int32_t unused3;	/* 36-39: Unused. */
	u_int32_t key_count;	/* 40-43: Cached key count. */
	u_int32_t record_count;	/* 44-47: Cached record count. */
	u_int32_t flags;	/* 48-51: Flags: unique to each AM. */
				/* 52-71: Unique file ID. */
	u_int8_t  uid[DB_FILE_ID_LEN];
} DBMETA33, DBMETA;

/************************************************************************
 BTREE METADATA PAGE LAYOUT
 ************************************************************************/
typedef struct _btmeta33 {
#define	BTM_DUP		0x001	/*	  Duplicates. */
#define	BTM_RECNO	0x002	/*	  Recno tree. */
#define	BTM_RECNUM	0x004	/*	  Btree: maintain record count. */
#define	BTM_FIXEDLEN	0x008	/*	  Recno: fixed length records. */
#define	BTM_RENUMBER	0x010	/*	  Recno: renumber on insert/delete. */
#define	BTM_SUBDB	0x020	/*	  Subdatabases. */
#define	BTM_DUPSORT	0x040	/*	  Duplicates are sorted. */
#define	BTM_MASK	0x07f
	DBMETA	dbmeta;		/* 00-71: Generic meta-data header. */

	u_int32_t maxkey;	/* 72-75: Btree: Maxkey. */
	u_int32_t minkey;	/* 76-79: Btree: Minkey. */
	u_int32_t re_len;	/* 80-83: Recno: fixed-length record length. */
	u_int32_t re_pad;	/* 84-87: Recno: fixed-length record pad. */
	u_int32_t root;		/* 88-91: Root page. */
	u_int32_t unused[92];	/* 92-459: Unused space */
	u_int32_t crypto_magic;		/* 460-463: Crypto magic number */
	u_int32_t trash[3];		/* 464-475: Trash space - Do not use */
	u_int8_t iv[DB_IV_BYTES];	/* 476-495: Crypto IV */
	u_int8_t chksum[DB_MAC_KEY];	/* 496-511: Page chksum */

	/*
	 * Minimum page size is 512.
	 */
} BTMETA33, BTMETA;

/************************************************************************
 HASH METADATA PAGE LAYOUT
 ************************************************************************/
typedef struct _hashmeta33 {
#define	DB_HASH_DUP	0x01	/*	  Duplicates. */
#define	DB_HASH_SUBDB	0x02	/*	  Subdatabases. */
#define	DB_HASH_DUPSORT	0x04	/*	  Duplicates are sorted. */
	DBMETA dbmeta;		/* 00-71: Generic meta-data page header. */

	u_int32_t max_bucket;	/* 72-75: ID of Maximum bucket in use */
	u_int32_t high_mask;	/* 76-79: Modulo mask into table */
	u_int32_t low_mask;	/* 80-83: Modulo mask into table lower half */
	u_int32_t ffactor;	/* 84-87: Fill factor */
	u_int32_t nelem;	/* 88-91: Number of keys in hash table */
	u_int32_t h_charkey;	/* 92-95: Value of hash(CHARKEY) */
#define	NCACHED	32		/* number of spare points */
				/* 96-223: Spare pages for overflow */
	u_int32_t spares[NCACHED];
	u_int32_t unused[59];	/* 224-459: Unused space */
	u_int32_t crypto_magic;	/* 460-463: Crypto magic number */
	u_int32_t trash[3];	/* 464-475: Trash space - Do not use */
	u_int8_t iv[DB_IV_BYTES];	/* 476-495: Crypto IV */
	u_int8_t chksum[DB_MAC_KEY];	/* 496-511: Page chksum */

	/*
	 * Minimum page size is 512.
	 */
} HMETA33, HMETA;

/************************************************************************
 QUEUE METADATA PAGE LAYOUT
 ************************************************************************/
/*
 * QAM Meta data page structure
 *
 */
typedef struct _qmeta33 {
	DBMETA    dbmeta;	/* 00-71: Generic meta-data header. */

	u_int32_t first_recno;	/* 72-75: First not deleted record. */
	u_int32_t cur_recno;	/* 76-79: Next recno to be allocated. */
	u_int32_t re_len;	/* 80-83: Fixed-length record length. */
	u_int32_t re_pad;	/* 84-87: Fixed-length record pad. */
	u_int32_t rec_page;	/* 88-91: Records Per Page. */
	u_int32_t page_ext;	/* 92-95: Pages per extent */

	u_int32_t unused[91];	/* 96-459: Unused space */
	u_int32_t crypto_magic;	/* 460-463: Crypto magic number */
	u_int32_t trash[3];	/* 464-475: Trash space - Do not use */
	u_int8_t iv[DB_IV_BYTES];	/* 476-495: Crypto IV */
	u_int8_t chksum[DB_MAC_KEY];	/* 496-511: Page chksum */
	/*
	 * Minimum page size is 512.
	 */
} QMETA33, QMETA;

/*
 * DBMETASIZE is a constant used by __db_file_setup and DB->verify
 * as a buffer which is guaranteed to be larger than any possible
 * metadata page size and smaller than any disk sector.
 */
#define	DBMETASIZE	512

/************************************************************************
 BTREE/HASH MAIN PAGE LAYOUT
 ************************************************************************/
/*
 *	+-----------------------------------+
 *	|    lsn    |   pgno    | prev pgno |
 *	+-----------------------------------+
 *	| next pgno |  entries  | hf offset |
 *	+-----------------------------------+
 *	|   level   |   type    |   chksum  |
 *	+-----------------------------------+
 *	|    iv     |   index   | free -->  |
 *	+-----------+-----------------------+
 *	|	 F R E E A R E A            |
 *	+-----------------------------------+
 *	|              <-- free |   item    |
 *	+-----------------------------------+
 *	|   item    |   item    |   item    |
 *	+-----------------------------------+
 *
 * sizeof(PAGE) == 26 bytes + possibly 20 bytes of checksum and possibly
 * 16 bytes of IV (+ 2 bytes for alignment), and the following indices
 * are guaranteed to be two-byte aligned.  If we aren't doing crypto or
 * checksumming the bytes are reclaimed for data storage.
 *
 * For hash and btree leaf pages, index items are paired, e.g., inp[0] is the
 * key for inp[1]'s data.  All other types of pages only contain single items.
 */
typedef struct __pg_chksum {
	u_int8_t	unused[2];		/* 26-27: For alignment */
	u_int8_t	chksum[4];		/* 28-31: Checksum */
} PG_CHKSUM;

typedef struct __pg_crypto {
	u_int8_t	unused[2];		/* 26-27: For alignment */
	u_int8_t	chksum[DB_MAC_KEY];	/* 28-47: Checksum */
	u_int8_t	iv[DB_IV_BYTES];	/* 48-63: IV */
	/* !!!
	 * Must be 16-byte aligned for crypto
	 */
} PG_CRYPTO;

typedef struct _db_page {
	DB_LSN	  lsn;		/* 00-07: Log sequence number. */
	db_pgno_t pgno;		/* 08-11: Current page number. */
	db_pgno_t prev_pgno;	/* 12-15: Previous page number. */
	db_pgno_t next_pgno;	/* 16-19: Next page number. */
	db_indx_t entries;	/* 20-21: Number of items on the page. */
	db_indx_t hf_offset;	/* 22-23: High free byte page offset. */

	/*
	 * The btree levels are numbered from the leaf to the root, starting
	 * with 1, so the leaf is level 1, its parent is level 2, and so on.
	 * We maintain this level on all btree pages, but the only place that
	 * we actually need it is on the root page.  It would not be difficult
	 * to hide the byte on the root page once it becomes an internal page,
	 * so we could get this byte back if we needed it for something else.
	 */
#define	LEAFLEVEL	  1
#define	MAXBTREELEVEL	255
	u_int8_t  level;	/*    24: Btree tree level. */
	u_int8_t  type;		/*    25: Page type. */
} PAGE;

#define	SIZEOF_PAGE	26
/*
 * !!!
 * DB_AM_ENCRYPT always implies DB_AM_CHKSUM so that must come first.
 */
#define	P_INP(dbp, pg)							\
	((db_indx_t *)((u_int8_t *)(pg) + SIZEOF_PAGE +			\
	(F_ISSET((dbp), DB_AM_ENCRYPT) ? sizeof(PG_CRYPTO) :		\
	(F_ISSET((dbp), DB_AM_CHKSUM) ? sizeof(PG_CHKSUM) : 0))))

#define	P_IV(dbp, pg)							\
	(F_ISSET((dbp), DB_AM_ENCRYPT) ? ((u_int8_t *)(pg) +		\
	SIZEOF_PAGE + SSZA(PG_CRYPTO, iv))				\
	: NULL)

#define	P_CHKSUM(dbp, pg)						\
	(F_ISSET((dbp), DB_AM_ENCRYPT) ? ((u_int8_t *)(pg) +		\
	SIZEOF_PAGE + SSZA(PG_CRYPTO, chksum)) :			\
	(F_ISSET((dbp), DB_AM_CHKSUM) ? ((u_int8_t *)(pg) +		\
	SIZEOF_PAGE + SSZA(PG_CHKSUM, chksum))			\
	: NULL))

/* PAGE element macros. */
#define	LSN(p)		(((PAGE *)p)->lsn)
#define	PGNO(p)		(((PAGE *)p)->pgno)
#define	PREV_PGNO(p)	(((PAGE *)p)->prev_pgno)
#define	NEXT_PGNO(p)	(((PAGE *)p)->next_pgno)
#define	NUM_ENT(p)	(((PAGE *)p)->entries)
#define	HOFFSET(p)	(((PAGE *)p)->hf_offset)
#define	LEVEL(p)	(((PAGE *)p)->level)
#define	TYPE(p)		(((PAGE *)p)->type)

/************************************************************************
 QUEUE MAIN PAGE LAYOUT
 ************************************************************************/
/*
 * Sizes of page below.  Used to reclaim space if not doing
 * crypto or checksumming.  If you change the QPAGE below you
 * MUST adjust this too.
 */
#define	QPAGE_NORMAL	28
#define	QPAGE_CHKSUM	48
#define	QPAGE_SEC	64

typedef struct _qpage {
	DB_LSN	  lsn;		/* 00-07: Log sequence number. */
	db_pgno_t pgno;		/* 08-11: Current page number. */
	u_int32_t unused0[3];	/* 12-23: Unused. */
	u_int8_t  unused1[1];	/*    24: Unused. */
	u_int8_t  type;		/*    25: Page type. */
	u_int8_t  unused2[2];	/* 26-27: Unused. */
	u_int8_t  chksum[DB_MAC_KEY]; /* 28-47: Checksum */
	u_int8_t  iv[DB_IV_BYTES]; /* 48-63: IV */
} QPAGE;

#define	QPAGE_SZ(dbp)						\
	(F_ISSET((dbp), DB_AM_ENCRYPT) ? QPAGE_SEC :		\
	F_ISSET((dbp), DB_AM_CHKSUM) ? QPAGE_CHKSUM : QPAGE_NORMAL)
/*
 * !!!
 * The next_pgno and prev_pgno fields are not maintained for btree and recno
 * internal pages.  Doing so only provides a minor performance improvement,
 * it's hard to do when deleting internal pages, and it increases the chance
 * of deadlock during deletes and splits because we have to re-link pages at
 * more than the leaf level.
 *
 * !!!
 * The btree/recno access method needs db_recno_t bytes of space on the root
 * page to specify how many records are stored in the tree.  (The alternative
 * is to store the number of records in the meta-data page, which will create
 * a second hot spot in trees being actively modified, or recalculate it from
 * the BINTERNAL fields on each access.)  Overload the PREV_PGNO field.
 */
#define	RE_NREC(p)							\
	((TYPE(p) == P_IBTREE || TYPE(p) == P_IRECNO) ?	PREV_PGNO(p) :	\
	(db_pgno_t)(TYPE(p) == P_LBTREE ? NUM_ENT(p) / 2 : NUM_ENT(p)))
#define	RE_NREC_ADJ(p, adj)						\
	PREV_PGNO(p) += adj;
#define	RE_NREC_SET(p, num)						\
	PREV_PGNO(p) = num;

/*
 * Initialize a page.
 *
 * !!!
 * Don't modify the page's LSN, code depends on it being unchanged after a
 * P_INIT call.
 */
#define	P_INIT(pg, pg_size, n, pg_prev, pg_next, btl, pg_type) do {	\
	PGNO(pg) = n;							\
	PREV_PGNO(pg) = pg_prev;					\
	NEXT_PGNO(pg) = pg_next;					\
	NUM_ENT(pg) = 0;						\
	HOFFSET(pg) = pg_size;						\
	LEVEL(pg) = btl;						\
	TYPE(pg) = pg_type;						\
} while (0)

/* Page header length (offset to first index). */
#define	P_OVERHEAD(dbp)	P_TO_UINT16(P_INP(dbp, 0))

/* First free byte. */
#define	LOFFSET(dbp, pg)						\
    (P_OVERHEAD(dbp) + NUM_ENT(pg) * sizeof(db_indx_t))

/* Free space on a regular page. */
#define	P_FREESPACE(dbp, pg)	(HOFFSET(pg) - LOFFSET(dbp, pg))

/* Get a pointer to the bytes at a specific index. */
#define	P_ENTRY(dbp, pg, indx)	((u_int8_t *)pg + P_INP(dbp, pg)[indx])

/************************************************************************
 OVERFLOW PAGE LAYOUT
 ************************************************************************/

/*
 * Overflow items are referenced by HOFFPAGE and BOVERFLOW structures, which
 * store a page number (the first page of the overflow item) and a length
 * (the total length of the overflow item).  The overflow item consists of
 * some number of overflow pages, linked by the next_pgno field of the page.
 * A next_pgno field of PGNO_INVALID flags the end of the overflow item.
 *
 * Overflow page overloads:
 *	The amount of overflow data stored on each page is stored in the
 *	hf_offset field.
 *
 *	The implementation reference counts overflow items as it's possible
 *	for them to be promoted onto btree internal pages.  The reference
 *	count is stored in the entries field.
 */
#define	OV_LEN(p)	(((PAGE *)p)->hf_offset)
#define	OV_REF(p)	(((PAGE *)p)->entries)

/* Maximum number of bytes that you can put on an overflow page. */
#define	P_MAXSPACE(dbp, psize)	((psize) - P_OVERHEAD(dbp))

/* Free space on an overflow page. */
#define	P_OVFLSPACE(dbp, psize, pg)	(P_MAXSPACE(dbp, psize) - HOFFSET(pg))

/************************************************************************
 HASH PAGE LAYOUT
 ************************************************************************/

/* Each index references a group of bytes on the page. */
#define	H_KEYDATA	1	/* Key/data item. */
#define	H_DUPLICATE	2	/* Duplicate key/data item. */
#define	H_OFFPAGE	3	/* Overflow key/data item. */
#define	H_OFFDUP	4	/* Overflow page of duplicates. */

/*
 * !!!
 * Items on hash pages are (potentially) unaligned, so we can never cast the
 * (page + offset) pointer to an HKEYDATA, HOFFPAGE or HOFFDUP structure, as
 * we do with B+tree on-page structures.  Because we frequently want the type
 * field, it requires no alignment, and it's in the same location in all three
 * structures, there's a pair of macros.
 */
#define	HPAGE_PTYPE(p)		(*(u_int8_t *)p)
#define	HPAGE_TYPE(dbp, pg, indx)	(*P_ENTRY(dbp, pg, indx))

/*
 * The first and second types are H_KEYDATA and H_DUPLICATE, represented
 * by the HKEYDATA structure:
 *
 *	+-----------------------------------+
 *	|    type   | key/data ...          |
 *	+-----------------------------------+
 *
 * For duplicates, the data field encodes duplicate elements in the data
 * field:
 *
 *	+---------------------------------------------------------------+
 *	|    type   | len1 | element1 | len1 | len2 | element2 | len2   |
 *	+---------------------------------------------------------------+
 *
 * Thus, by keeping track of the offset in the element, we can do both
 * backward and forward traversal.
 */
typedef struct _hkeydata {
	u_int8_t  type;		/*    00: Page type. */
	u_int8_t  data[1];	/* Variable length key/data item. */
} HKEYDATA;
#define	HKEYDATA_DATA(p)	(((u_int8_t *)p) + SSZA(HKEYDATA, data))

/*
 * The length of any HKEYDATA item. Note that indx is an element index,
 * not a PAIR index.
 */
#define	LEN_HITEM(dbp, pg, pgsize, indx)				\
	(((indx) == 0 ? pgsize :					\
	(P_INP(dbp, pg)[indx - 1])) - (P_INP(dbp, pg)[indx]))

#define	LEN_HKEYDATA(dbp, pg, psize, indx)				\
	(db_indx_t)(LEN_HITEM(dbp, pg, psize, indx) - HKEYDATA_SIZE(0))

/*
 * Page space required to add a new HKEYDATA item to the page, with and
 * without the index value.
 */
#define	HKEYDATA_SIZE(len)						\
	((len) + SSZA(HKEYDATA, data))
#define	HKEYDATA_PSIZE(len)						\
	(HKEYDATA_SIZE(len) + sizeof(db_indx_t))

/* Put a HKEYDATA item at the location referenced by a page entry. */
#define	PUT_HKEYDATA(pe, kd, len, type) {				\
	((HKEYDATA *)pe)->type = type;					\
	memcpy((u_int8_t *)pe + sizeof(u_int8_t), kd, len);		\
}

/*
 * Macros the describe the page layout in terms of key-data pairs.
 */
#define	H_NUMPAIRS(pg)			(NUM_ENT(pg) / 2)
#define	H_KEYINDEX(indx)		(indx)
#define	H_DATAINDEX(indx)		((indx) + 1)
#define	H_PAIRKEY(dbp, pg, indx)	P_ENTRY(dbp, pg, H_KEYINDEX(indx))
#define	H_PAIRDATA(dbp, pg, indx)	P_ENTRY(dbp, pg, H_DATAINDEX(indx))
#define	H_PAIRSIZE(dbp, pg, psize, indx)				\
	(LEN_HITEM(dbp, pg, psize, H_KEYINDEX(indx)) +			\
	LEN_HITEM(dbp, pg, psize, H_DATAINDEX(indx)))
#define	LEN_HDATA(dbp, p, psize, indx)					\
    LEN_HKEYDATA(dbp, p, psize, H_DATAINDEX(indx))
#define	LEN_HKEY(dbp, p, psize, indx)					\
    LEN_HKEYDATA(dbp, p, psize, H_KEYINDEX(indx))

/*
 * The third type is the H_OFFPAGE, represented by the HOFFPAGE structure:
 */
typedef struct _hoffpage {
	u_int8_t  type;		/*    00: Page type and delete flag. */
	u_int8_t  unused[3];	/* 01-03: Padding, unused. */
	db_pgno_t pgno;		/* 04-07: Offpage page number. */
	u_int32_t tlen;		/* 08-11: Total length of item. */
} HOFFPAGE;

#define	HOFFPAGE_PGNO(p)	(((u_int8_t *)p) + SSZ(HOFFPAGE, pgno))
#define	HOFFPAGE_TLEN(p)	(((u_int8_t *)p) + SSZ(HOFFPAGE, tlen))

/*
 * Page space required to add a new HOFFPAGE item to the page, with and
 * without the index value.
 */
#define	HOFFPAGE_SIZE		(sizeof(HOFFPAGE))
#define	HOFFPAGE_PSIZE		(HOFFPAGE_SIZE + sizeof(db_indx_t))

/*
 * The fourth type is H_OFFDUP represented by the HOFFDUP structure:
 */
typedef struct _hoffdup {
	u_int8_t  type;		/*    00: Page type and delete flag. */
	u_int8_t  unused[3];	/* 01-03: Padding, unused. */
	db_pgno_t pgno;		/* 04-07: Offpage page number. */
} HOFFDUP;
#define	HOFFDUP_PGNO(p)		(((u_int8_t *)p) + SSZ(HOFFDUP, pgno))

/*
 * Page space required to add a new HOFFDUP item to the page, with and
 * without the index value.
 */
#define	HOFFDUP_SIZE		(sizeof(HOFFDUP))

/************************************************************************
 BTREE PAGE LAYOUT
 ************************************************************************/

/* Each index references a group of bytes on the page. */
#define	B_KEYDATA	1	/* Key/data item. */
#define	B_DUPLICATE	2	/* Duplicate key/data item. */
#define	B_OVERFLOW	3	/* Overflow key/data item. */

/*
 * We have to store a deleted entry flag in the page.   The reason is complex,
 * but the simple version is that we can't delete on-page items referenced by
 * a cursor -- the return order of subsequent insertions might be wrong.  The
 * delete flag is an overload of the top bit of the type byte.
 */
#define	B_DELETE	(0x80)
#define	B_DCLR(t)	(t) &= ~B_DELETE
#define	B_DSET(t)	(t) |= B_DELETE
#define	B_DISSET(t)	((t) & B_DELETE)

#define	B_TYPE(t)	((t) & ~B_DELETE)
#define	B_TSET(t, type, deleted) {					\
	(t) = (type);							\
	if (deleted)							\
		B_DSET(t);						\
}

/*
 * The first type is B_KEYDATA, represented by the BKEYDATA structure:
 */
typedef struct _bkeydata {
	db_indx_t len;		/* 00-01: Key/data item length. */
	u_int8_t  type;		/*    02: Page type AND DELETE FLAG. */
	u_int8_t  data[1];	/* Variable length key/data item. */
} BKEYDATA;

/* Get a BKEYDATA item for a specific index. */
#define	GET_BKEYDATA(dbp, pg, indx)					\
	((BKEYDATA *)P_ENTRY(dbp, pg, indx))

/*
 * Page space required to add a new BKEYDATA item to the page, with and
 * without the index value.
 */
#define	BKEYDATA_SIZE(len)						\
	ALIGN((len) + SSZA(BKEYDATA, data), sizeof(u_int32_t))
#define	BKEYDATA_PSIZE(len)						\
	(BKEYDATA_SIZE(len) + sizeof(db_indx_t))

/*
 * The second and third types are B_DUPLICATE and B_OVERFLOW, represented
 * by the BOVERFLOW structure.
 */
typedef struct _boverflow {
	db_indx_t unused1;	/* 00-01: Padding, unused. */
	u_int8_t  type;		/*    02: Page type AND DELETE FLAG. */
	u_int8_t  unused2;	/*    03: Padding, unused. */
	db_pgno_t pgno;		/* 04-07: Next page number. */
	u_int32_t tlen;		/* 08-11: Total length of item. */
} BOVERFLOW;

/* Get a BOVERFLOW item for a specific index. */
#define	GET_BOVERFLOW(dbp, pg, indx)					\
	((BOVERFLOW *)P_ENTRY(dbp, pg, indx))

/*
 * Page space required to add a new BOVERFLOW item to the page, with and
 * without the index value.  The (u_int16_t) cast avoids warnings: ALIGN
 * casts to db_align_t, the cast converts it to a small integral type so
 * we don't get complaints when we assign the final result to an integral
 * type smaller than db_align_t.
 */
#define	BOVERFLOW_SIZE							\
	((u_int16_t)ALIGN(sizeof(BOVERFLOW), sizeof(u_int32_t)))
#define	BOVERFLOW_PSIZE							\
	(BOVERFLOW_SIZE + sizeof(db_indx_t))

/*
 * Btree leaf and hash page layouts group indices in sets of two, one for the
 * key and one for the data.  Everything else does it in sets of one to save
 * space.  Use the following macros so that it's real obvious what's going on.
 */
#define	O_INDX	1
#define	P_INDX	2

/************************************************************************
 BTREE INTERNAL PAGE LAYOUT
 ************************************************************************/

/*
 * Btree internal entry.
 */
typedef struct _binternal {
	db_indx_t  len;		/* 00-01: Key/data item length. */
	u_int8_t   type;	/*    02: Page type AND DELETE FLAG. */
	u_int8_t   unused;	/*    03: Padding, unused. */
	db_pgno_t  pgno;	/* 04-07: Page number of referenced page. */
	db_recno_t nrecs;	/* 08-11: Subtree record count. */
	u_int8_t   data[1];	/* Variable length key item. */
} BINTERNAL;

/* Get a BINTERNAL item for a specific index. */
#define	GET_BINTERNAL(dbp, pg, indx)					\
	((BINTERNAL *)P_ENTRY(dbp, pg, indx))

/*
 * Page space required to add a new BINTERNAL item to the page, with and
 * without the index value.
 */
#define	BINTERNAL_SIZE(len)						\
	ALIGN((len) + SSZA(BINTERNAL, data), sizeof(u_int32_t))
#define	BINTERNAL_PSIZE(len)						\
	(BINTERNAL_SIZE(len) + sizeof(db_indx_t))

/************************************************************************
 RECNO INTERNAL PAGE LAYOUT
 ************************************************************************/

/*
 * The recno internal entry.
 */
typedef struct _rinternal {
	db_pgno_t  pgno;	/* 00-03: Page number of referenced page. */
	db_recno_t nrecs;	/* 04-07: Subtree record count. */
} RINTERNAL;

/* Get a RINTERNAL item for a specific index. */
#define	GET_RINTERNAL(dbp, pg, indx)					\
	((RINTERNAL *)P_ENTRY(dbp, pg, indx))

/*
 * Page space required to add a new RINTERNAL item to the page, with and
 * without the index value.
 */
#define	RINTERNAL_SIZE							\
	ALIGN(sizeof(RINTERNAL), sizeof(u_int32_t))
#define	RINTERNAL_PSIZE							\
	(RINTERNAL_SIZE + sizeof(db_indx_t))

#if defined(__cplusplus)
}
#endif

#endif /* !_DB_PAGE_H_ */

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The BSD License


Written By
India India
This member has not yet provided a Biography. Assume it's interesting and varied, and probably something to do with programming.

Comments and Discussions