Click here to Skip to main content
15,881,803 members
Articles / Programming Languages / C++

Capturing Video from Web-camera on Windows 7 and 8 by using Media Foundation

Rate me:
Please Sign up or sign in to vote.
4.96/5 (25 votes)
10 Apr 2013CPOL5 min read 280.1K   33.1K   71  
Simple lib for capturing video from web-camera by using Media Foundation
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_GPU_HPP__
#define __OPENCV_GPU_HPP__

#ifndef SKIP_INCLUDES
#include <vector>
#include <memory>
#include <iosfwd>
#endif

#include "opencv2/core/gpumat.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/features2d/features2d.hpp"

namespace cv { namespace gpu {

//////////////////////////////// CudaMem ////////////////////////////////
// CudaMem is limited cv::Mat with page locked memory allocation.
// Page locked memory is only needed for async and faster coping to GPU.
// It is convertable to cv::Mat header without reference counting
// so you can use it with other opencv functions.

// Page-locks the matrix m memory and maps it for the device(s)
CV_EXPORTS void registerPageLocked(Mat& m);
// Unmaps the memory of matrix m, and makes it pageable again.
CV_EXPORTS void unregisterPageLocked(Mat& m);

class CV_EXPORTS CudaMem
{
public:
    enum  { ALLOC_PAGE_LOCKED = 1, ALLOC_ZEROCOPY = 2, ALLOC_WRITE_COMBINED = 4 };

    CudaMem();
    CudaMem(const CudaMem& m);

    CudaMem(int rows, int cols, int type, int _alloc_type = ALLOC_PAGE_LOCKED);
    CudaMem(Size size, int type, int alloc_type = ALLOC_PAGE_LOCKED);


    //! creates from cv::Mat with coping data
    explicit CudaMem(const Mat& m, int alloc_type = ALLOC_PAGE_LOCKED);

    ~CudaMem();

    CudaMem& operator = (const CudaMem& m);

    //! returns deep copy of the matrix, i.e. the data is copied
    CudaMem clone() const;

    //! allocates new matrix data unless the matrix already has specified size and type.
    void create(int rows, int cols, int type, int alloc_type = ALLOC_PAGE_LOCKED);
    void create(Size size, int type, int alloc_type = ALLOC_PAGE_LOCKED);

    //! decrements reference counter and released memory if needed.
    void release();

    //! returns matrix header with disabled reference counting for CudaMem data.
    Mat createMatHeader() const;
    operator Mat() const;

    //! maps host memory into device address space and returns GpuMat header for it. Throws exception if not supported by hardware.
    GpuMat createGpuMatHeader() const;
    operator GpuMat() const;

    //returns if host memory can be mapperd to gpu address space;
    static bool canMapHostMemory();

    // Please see cv::Mat for descriptions
    bool isContinuous() const;
    size_t elemSize() const;
    size_t elemSize1() const;
    int type() const;
    int depth() const;
    int channels() const;
    size_t step1() const;
    Size size() const;
    bool empty() const;


    // Please see cv::Mat for descriptions
    int flags;
    int rows, cols;
    size_t step;

    uchar* data;
    int* refcount;

    uchar* datastart;
    uchar* dataend;

    int alloc_type;
};

//////////////////////////////// CudaStream ////////////////////////////////
// Encapculates Cuda Stream. Provides interface for async coping.
// Passed to each function that supports async kernel execution.
// Reference counting is enabled

class CV_EXPORTS Stream
{
public:
    Stream();
    ~Stream();

    Stream(const Stream&);
    Stream& operator =(const Stream&);

    bool queryIfComplete();
    void waitForCompletion();

    //! downloads asynchronously
    // Warning! cv::Mat must point to page locked memory (i.e. to CudaMem data or to its subMat)
    void enqueueDownload(const GpuMat& src, CudaMem& dst);
    void enqueueDownload(const GpuMat& src, Mat& dst);

    //! uploads asynchronously
    // Warning! cv::Mat must point to page locked memory (i.e. to CudaMem data or to its ROI)
    void enqueueUpload(const CudaMem& src, GpuMat& dst);
    void enqueueUpload(const Mat& src, GpuMat& dst);

    //! copy asynchronously
    void enqueueCopy(const GpuMat& src, GpuMat& dst);

    //! memory set asynchronously
    void enqueueMemSet(GpuMat& src, Scalar val);
    void enqueueMemSet(GpuMat& src, Scalar val, const GpuMat& mask);

    //! converts matrix type, ex from float to uchar depending on type
    void enqueueConvert(const GpuMat& src, GpuMat& dst, int dtype, double a = 1, double b = 0);

    //! adds a callback to be called on the host after all currently enqueued items in the stream have completed
    typedef void (*StreamCallback)(Stream& stream, int status, void* userData);
    void enqueueHostCallback(StreamCallback callback, void* userData);

    static Stream& Null();

    operator bool() const;

private:
    struct Impl;

    explicit Stream(Impl* impl);
    void create();
    void release();

    Impl *impl;

    friend struct StreamAccessor;
};


//////////////////////////////// Filter Engine ////////////////////////////////

/*!
The Base Class for 1D or Row-wise Filters

This is the base class for linear or non-linear filters that process 1D data.
In particular, such filters are used for the "horizontal" filtering parts in separable filters.
*/
class CV_EXPORTS BaseRowFilter_GPU
{
public:
    BaseRowFilter_GPU(int ksize_, int anchor_) : ksize(ksize_), anchor(anchor_) {}
    virtual ~BaseRowFilter_GPU() {}
    virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
    int ksize, anchor;
};

/*!
The Base Class for Column-wise Filters

This is the base class for linear or non-linear filters that process columns of 2D arrays.
Such filters are used for the "vertical" filtering parts in separable filters.
*/
class CV_EXPORTS BaseColumnFilter_GPU
{
public:
    BaseColumnFilter_GPU(int ksize_, int anchor_) : ksize(ksize_), anchor(anchor_) {}
    virtual ~BaseColumnFilter_GPU() {}
    virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
    int ksize, anchor;
};

/*!
The Base Class for Non-Separable 2D Filters.

This is the base class for linear or non-linear 2D filters.
*/
class CV_EXPORTS BaseFilter_GPU
{
public:
    BaseFilter_GPU(const Size& ksize_, const Point& anchor_) : ksize(ksize_), anchor(anchor_) {}
    virtual ~BaseFilter_GPU() {}
    virtual void operator()(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null()) = 0;
    Size ksize;
    Point anchor;
};

/*!
The Base Class for Filter Engine.

The class can be used to apply an arbitrary filtering operation to an image.
It contains all the necessary intermediate buffers.
*/
class CV_EXPORTS FilterEngine_GPU
{
public:
    virtual ~FilterEngine_GPU() {}

    virtual void apply(const GpuMat& src, GpuMat& dst, Rect roi = Rect(0,0,-1,-1), Stream& stream = Stream::Null()) = 0;
};

//! returns the non-separable filter engine with the specified filter
CV_EXPORTS Ptr<FilterEngine_GPU> createFilter2D_GPU(const Ptr<BaseFilter_GPU>& filter2D, int srcType, int dstType);

//! returns the separable filter engine with the specified filters
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter,
    const Ptr<BaseColumnFilter_GPU>& columnFilter, int srcType, int bufType, int dstType);
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU>& rowFilter,
    const Ptr<BaseColumnFilter_GPU>& columnFilter, int srcType, int bufType, int dstType, GpuMat& buf);

//! returns horizontal 1D box filter
//! supports only CV_8UC1 source type and CV_32FC1 sum type
CV_EXPORTS Ptr<BaseRowFilter_GPU> getRowSumFilter_GPU(int srcType, int sumType, int ksize, int anchor = -1);

//! returns vertical 1D box filter
//! supports only CV_8UC1 sum type and CV_32FC1 dst type
CV_EXPORTS Ptr<BaseColumnFilter_GPU> getColumnSumFilter_GPU(int sumType, int dstType, int ksize, int anchor = -1);

//! returns 2D box filter
//! supports CV_8UC1 and CV_8UC4 source type, dst type must be the same as source type
CV_EXPORTS Ptr<BaseFilter_GPU> getBoxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1, -1));

//! returns box filter engine
CV_EXPORTS Ptr<FilterEngine_GPU> createBoxFilter_GPU(int srcType, int dstType, const Size& ksize,
    const Point& anchor = Point(-1,-1));

//! returns 2D morphological filter
//! only MORPH_ERODE and MORPH_DILATE are supported
//! supports CV_8UC1 and CV_8UC4 types
//! kernel must have CV_8UC1 type, one rows and cols == ksize.width * ksize.height
CV_EXPORTS Ptr<BaseFilter_GPU> getMorphologyFilter_GPU(int op, int type, const Mat& kernel, const Size& ksize,
    Point anchor=Point(-1,-1));

//! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported.
CV_EXPORTS Ptr<FilterEngine_GPU> createMorphologyFilter_GPU(int op, int type, const Mat& kernel,
    const Point& anchor = Point(-1,-1), int iterations = 1);
CV_EXPORTS Ptr<FilterEngine_GPU> createMorphologyFilter_GPU(int op, int type, const Mat& kernel, GpuMat& buf,
    const Point& anchor = Point(-1,-1), int iterations = 1);

//! returns 2D filter with the specified kernel
//! supports CV_8U, CV_16U and CV_32F one and four channel image
CV_EXPORTS Ptr<BaseFilter_GPU> getLinearFilter_GPU(int srcType, int dstType, const Mat& kernel, Point anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);

//! returns the non-separable linear filter engine
CV_EXPORTS Ptr<FilterEngine_GPU> createLinearFilter_GPU(int srcType, int dstType, const Mat& kernel,
    Point anchor = Point(-1,-1), int borderType = BORDER_DEFAULT);

//! returns the primitive row filter with the specified kernel.
//! supports only CV_8UC1, CV_8UC4, CV_16SC1, CV_16SC2, CV_32SC1, CV_32FC1 source type.
//! there are two version of algorithm: NPP and OpenCV.
//! NPP calls when srcType == CV_8UC1 or srcType == CV_8UC4 and bufType == srcType,
//! otherwise calls OpenCV version.
//! NPP supports only BORDER_CONSTANT border type.
//! OpenCV version supports only CV_32F as buffer depth and
//! BORDER_REFLECT101, BORDER_REPLICATE and BORDER_CONSTANT border types.
CV_EXPORTS Ptr<BaseRowFilter_GPU> getLinearRowFilter_GPU(int srcType, int bufType, const Mat& rowKernel,
    int anchor = -1, int borderType = BORDER_DEFAULT);

//! returns the primitive column filter with the specified kernel.
//! supports only CV_8UC1, CV_8UC4, CV_16SC1, CV_16SC2, CV_32SC1, CV_32FC1 dst type.
//! there are two version of algorithm: NPP and OpenCV.
//! NPP calls when dstType == CV_8UC1 or dstType == CV_8UC4 and bufType == dstType,
//! otherwise calls OpenCV version.
//! NPP supports only BORDER_CONSTANT border type.
//! OpenCV version supports only CV_32F as buffer depth and
//! BORDER_REFLECT101, BORDER_REPLICATE and BORDER_CONSTANT border types.
CV_EXPORTS Ptr<BaseColumnFilter_GPU> getLinearColumnFilter_GPU(int bufType, int dstType, const Mat& columnKernel,
    int anchor = -1, int borderType = BORDER_DEFAULT);

//! returns the separable linear filter engine
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat& rowKernel,
    const Mat& columnKernel, const Point& anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT,
    int columnBorderType = -1);
CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat& rowKernel,
    const Mat& columnKernel, GpuMat& buf, const Point& anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT,
    int columnBorderType = -1);

//! returns filter engine for the generalized Sobel operator
CV_EXPORTS Ptr<FilterEngine_GPU> createDerivFilter_GPU(int srcType, int dstType, int dx, int dy, int ksize,
                                                       int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
CV_EXPORTS Ptr<FilterEngine_GPU> createDerivFilter_GPU(int srcType, int dstType, int dx, int dy, int ksize, GpuMat& buf,
                                                       int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);

//! returns the Gaussian filter engine
CV_EXPORTS Ptr<FilterEngine_GPU> createGaussianFilter_GPU(int type, Size ksize, double sigma1, double sigma2 = 0,
                                                          int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
CV_EXPORTS Ptr<FilterEngine_GPU> createGaussianFilter_GPU(int type, Size ksize, GpuMat& buf, double sigma1, double sigma2 = 0,
                                                          int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);

//! returns maximum filter
CV_EXPORTS Ptr<BaseFilter_GPU> getMaxFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1));

//! returns minimum filter
CV_EXPORTS Ptr<BaseFilter_GPU> getMinFilter_GPU(int srcType, int dstType, const Size& ksize, Point anchor = Point(-1,-1));

//! smooths the image using the normalized box filter
//! supports CV_8UC1, CV_8UC4 types
CV_EXPORTS void boxFilter(const GpuMat& src, GpuMat& dst, int ddepth, Size ksize, Point anchor = Point(-1,-1), Stream& stream = Stream::Null());

//! a synonym for normalized box filter
static inline void blur(const GpuMat& src, GpuMat& dst, Size ksize, Point anchor = Point(-1,-1), Stream& stream = Stream::Null())
{
    boxFilter(src, dst, -1, ksize, anchor, stream);
}

//! erodes the image (applies the local minimum operator)
CV_EXPORTS void erode(const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1);
CV_EXPORTS void erode(const GpuMat& src, GpuMat& dst, const Mat& kernel, GpuMat& buf,
                      Point anchor = Point(-1, -1), int iterations = 1,
                      Stream& stream = Stream::Null());

//! dilates the image (applies the local maximum operator)
CV_EXPORTS void dilate(const GpuMat& src, GpuMat& dst, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1);
CV_EXPORTS void dilate(const GpuMat& src, GpuMat& dst, const Mat& kernel, GpuMat& buf,
                       Point anchor = Point(-1, -1), int iterations = 1,
                       Stream& stream = Stream::Null());

//! applies an advanced morphological operation to the image
CV_EXPORTS void morphologyEx(const GpuMat& src, GpuMat& dst, int op, const Mat& kernel, Point anchor = Point(-1, -1), int iterations = 1);
CV_EXPORTS void morphologyEx(const GpuMat& src, GpuMat& dst, int op, const Mat& kernel, GpuMat& buf1, GpuMat& buf2,
                             Point anchor = Point(-1, -1), int iterations = 1, Stream& stream = Stream::Null());

//! applies non-separable 2D linear filter to the image
CV_EXPORTS void filter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernel, Point anchor=Point(-1,-1), int borderType = BORDER_DEFAULT, Stream& stream = Stream::Null());

//! applies separable 2D linear filter to the image
CV_EXPORTS void sepFilter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY,
                            Point anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
CV_EXPORTS void sepFilter2D(const GpuMat& src, GpuMat& dst, int ddepth, const Mat& kernelX, const Mat& kernelY, GpuMat& buf,
                            Point anchor = Point(-1,-1), int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1,
                            Stream& stream = Stream::Null());

//! applies generalized Sobel operator to the image
CV_EXPORTS void Sobel(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1,
                      int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
CV_EXPORTS void Sobel(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, GpuMat& buf, int ksize = 3, double scale = 1,
                      int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());

//! applies the vertical or horizontal Scharr operator to the image
CV_EXPORTS void Scharr(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, double scale = 1,
                       int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
CV_EXPORTS void Scharr(const GpuMat& src, GpuMat& dst, int ddepth, int dx, int dy, GpuMat& buf, double scale = 1,
                       int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());

//! smooths the image using Gaussian filter.
CV_EXPORTS void GaussianBlur(const GpuMat& src, GpuMat& dst, Size ksize, double sigma1, double sigma2 = 0,
                             int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1);
CV_EXPORTS void GaussianBlur(const GpuMat& src, GpuMat& dst, Size ksize, GpuMat& buf, double sigma1, double sigma2 = 0,
                             int rowBorderType = BORDER_DEFAULT, int columnBorderType = -1, Stream& stream = Stream::Null());

//! applies Laplacian operator to the image
//! supports only ksize = 1 and ksize = 3
CV_EXPORTS void Laplacian(const GpuMat& src, GpuMat& dst, int ddepth, int ksize = 1, double scale = 1, int borderType = BORDER_DEFAULT, Stream& stream = Stream::Null());


////////////////////////////// Arithmetics ///////////////////////////////////

//! implements generalized matrix product algorithm GEMM from BLAS
CV_EXPORTS void gemm(const GpuMat& src1, const GpuMat& src2, double alpha,
    const GpuMat& src3, double beta, GpuMat& dst, int flags = 0, Stream& stream = Stream::Null());

//! transposes the matrix
//! supports matrix with element size = 1, 4 and 8 bytes (CV_8UC1, CV_8UC4, CV_16UC2, CV_32FC1, etc)
CV_EXPORTS void transpose(const GpuMat& src1, GpuMat& dst, Stream& stream = Stream::Null());

//! reverses the order of the rows, columns or both in a matrix
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U, CV_32S or CV_32F depth
CV_EXPORTS void flip(const GpuMat& a, GpuMat& b, int flipCode, Stream& stream = Stream::Null());

//! transforms 8-bit unsigned integers using lookup table: dst(i)=lut(src(i))
//! destination array will have the depth type as lut and the same channels number as source
//! supports CV_8UC1, CV_8UC3 types
CV_EXPORTS void LUT(const GpuMat& src, const Mat& lut, GpuMat& dst, Stream& stream = Stream::Null());

//! makes multi-channel array out of several single-channel arrays
CV_EXPORTS void merge(const GpuMat* src, size_t n, GpuMat& dst, Stream& stream = Stream::Null());

//! makes multi-channel array out of several single-channel arrays
CV_EXPORTS void merge(const vector<GpuMat>& src, GpuMat& dst, Stream& stream = Stream::Null());

//! copies each plane of a multi-channel array to a dedicated array
CV_EXPORTS void split(const GpuMat& src, GpuMat* dst, Stream& stream = Stream::Null());

//! copies each plane of a multi-channel array to a dedicated array
CV_EXPORTS void split(const GpuMat& src, vector<GpuMat>& dst, Stream& stream = Stream::Null());

//! computes magnitude of complex (x(i).re, x(i).im) vector
//! supports only CV_32FC2 type
CV_EXPORTS void magnitude(const GpuMat& xy, GpuMat& magnitude, Stream& stream = Stream::Null());

//! computes squared magnitude of complex (x(i).re, x(i).im) vector
//! supports only CV_32FC2 type
CV_EXPORTS void magnitudeSqr(const GpuMat& xy, GpuMat& magnitude, Stream& stream = Stream::Null());

//! computes magnitude of each (x(i), y(i)) vector
//! supports only floating-point source
CV_EXPORTS void magnitude(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, Stream& stream = Stream::Null());

//! computes squared magnitude of each (x(i), y(i)) vector
//! supports only floating-point source
CV_EXPORTS void magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, Stream& stream = Stream::Null());

//! computes angle (angle(i)) of each (x(i), y(i)) vector
//! supports only floating-point source
CV_EXPORTS void phase(const GpuMat& x, const GpuMat& y, GpuMat& angle, bool angleInDegrees = false, Stream& stream = Stream::Null());

//! converts Cartesian coordinates to polar
//! supports only floating-point source
CV_EXPORTS void cartToPolar(const GpuMat& x, const GpuMat& y, GpuMat& magnitude, GpuMat& angle, bool angleInDegrees = false, Stream& stream = Stream::Null());

//! converts polar coordinates to Cartesian
//! supports only floating-point source
CV_EXPORTS void polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees = false, Stream& stream = Stream::Null());

//! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values
CV_EXPORTS void normalize(const GpuMat& src, GpuMat& dst, double alpha = 1, double beta = 0,
                          int norm_type = NORM_L2, int dtype = -1, const GpuMat& mask = GpuMat());
CV_EXPORTS void normalize(const GpuMat& src, GpuMat& dst, double a, double b,
                          int norm_type, int dtype, const GpuMat& mask, GpuMat& norm_buf, GpuMat& cvt_buf);


//////////////////////////// Per-element operations ////////////////////////////////////

//! adds one matrix to another (c = a + b)
CV_EXPORTS void add(const GpuMat& a, const GpuMat& b, GpuMat& c, const GpuMat& mask = GpuMat(), int dtype = -1, Stream& stream = Stream::Null());
//! adds scalar to a matrix (c = a + s)
CV_EXPORTS void add(const GpuMat& a, const Scalar& sc, GpuMat& c, const GpuMat& mask = GpuMat(), int dtype = -1, Stream& stream = Stream::Null());

//! subtracts one matrix from another (c = a - b)
CV_EXPORTS void subtract(const GpuMat& a, const GpuMat& b, GpuMat& c, const GpuMat& mask = GpuMat(), int dtype = -1, Stream& stream = Stream::Null());
//! subtracts scalar from a matrix (c = a - s)
CV_EXPORTS void subtract(const GpuMat& a, const Scalar& sc, GpuMat& c, const GpuMat& mask = GpuMat(), int dtype = -1, Stream& stream = Stream::Null());

//! computes element-wise weighted product of the two arrays (c = scale * a * b)
CV_EXPORTS void multiply(const GpuMat& a, const GpuMat& b, GpuMat& c, double scale = 1, int dtype = -1, Stream& stream = Stream::Null());
//! weighted multiplies matrix to a scalar (c = scale * a * s)
CV_EXPORTS void multiply(const GpuMat& a, const Scalar& sc, GpuMat& c, double scale = 1, int dtype = -1, Stream& stream = Stream::Null());

//! computes element-wise weighted quotient of the two arrays (c = a / b)
CV_EXPORTS void divide(const GpuMat& a, const GpuMat& b, GpuMat& c, double scale = 1, int dtype = -1, Stream& stream = Stream::Null());
//! computes element-wise weighted quotient of matrix and scalar (c = a / s)
CV_EXPORTS void divide(const GpuMat& a, const Scalar& sc, GpuMat& c, double scale = 1, int dtype = -1, Stream& stream = Stream::Null());
//! computes element-wise weighted reciprocal of an array (dst = scale/src2)
CV_EXPORTS void divide(double scale, const GpuMat& b, GpuMat& c, int dtype = -1, Stream& stream = Stream::Null());

//! computes the weighted sum of two arrays (dst = alpha*src1 + beta*src2 + gamma)
CV_EXPORTS void addWeighted(const GpuMat& src1, double alpha, const GpuMat& src2, double beta, double gamma, GpuMat& dst,
                            int dtype = -1, Stream& stream = Stream::Null());

//! adds scaled array to another one (dst = alpha*src1 + src2)
static inline void scaleAdd(const GpuMat& src1, double alpha, const GpuMat& src2, GpuMat& dst, Stream& stream = Stream::Null())
{
    addWeighted(src1, alpha, src2, 1.0, 0.0, dst, -1, stream);
}

//! computes element-wise absolute difference of two arrays (c = abs(a - b))
CV_EXPORTS void absdiff(const GpuMat& a, const GpuMat& b, GpuMat& c, Stream& stream = Stream::Null());
//! computes element-wise absolute difference of array and scalar (c = abs(a - s))
CV_EXPORTS void absdiff(const GpuMat& a, const Scalar& s, GpuMat& c, Stream& stream = Stream::Null());

//! computes absolute value of each matrix element
//! supports CV_16S and CV_32F depth
CV_EXPORTS void abs(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());

//! computes square of each pixel in an image
//! supports CV_8U, CV_16U, CV_16S and CV_32F depth
CV_EXPORTS void sqr(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());

//! computes square root of each pixel in an image
//! supports CV_8U, CV_16U, CV_16S and CV_32F depth
CV_EXPORTS void sqrt(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());

//! computes exponent of each matrix element (b = e**a)
//! supports CV_8U, CV_16U, CV_16S and CV_32F depth
CV_EXPORTS void exp(const GpuMat& a, GpuMat& b, Stream& stream = Stream::Null());

//! computes natural logarithm of absolute value of each matrix element: b = log(abs(a))
//! supports CV_8U, CV_16U, CV_16S and CV_32F depth
CV_EXPORTS void log(const GpuMat& a, GpuMat& b, Stream& stream = Stream::Null());

//! computes power of each matrix element:
//    (dst(i,j) = pow(     src(i,j) , power), if src.type() is integer
//    (dst(i,j) = pow(fabs(src(i,j)), power), otherwise
//! supports all, except depth == CV_64F
CV_EXPORTS void pow(const GpuMat& src, double power, GpuMat& dst, Stream& stream = Stream::Null());

//! compares elements of two arrays (c = a <cmpop> b)
CV_EXPORTS void compare(const GpuMat& a, const GpuMat& b, GpuMat& c, int cmpop, Stream& stream = Stream::Null());
CV_EXPORTS void compare(const GpuMat& a, Scalar sc, GpuMat& c, int cmpop, Stream& stream = Stream::Null());

//! performs per-elements bit-wise inversion
CV_EXPORTS void bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null());

//! calculates per-element bit-wise disjunction of two arrays
CV_EXPORTS void bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null());
//! calculates per-element bit-wise disjunction of array and scalar
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth
CV_EXPORTS void bitwise_or(const GpuMat& src1, const Scalar& sc, GpuMat& dst, Stream& stream = Stream::Null());

//! calculates per-element bit-wise conjunction of two arrays
CV_EXPORTS void bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null());
//! calculates per-element bit-wise conjunction of array and scalar
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth
CV_EXPORTS void bitwise_and(const GpuMat& src1, const Scalar& sc, GpuMat& dst, Stream& stream = Stream::Null());

//! calculates per-element bit-wise "exclusive or" operation
CV_EXPORTS void bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask=GpuMat(), Stream& stream = Stream::Null());
//! calculates per-element bit-wise "exclusive or" of array and scalar
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth
CV_EXPORTS void bitwise_xor(const GpuMat& src1, const Scalar& sc, GpuMat& dst, Stream& stream = Stream::Null());

//! pixel by pixel right shift of an image by a constant value
//! supports 1, 3 and 4 channels images with integers elements
CV_EXPORTS void rshift(const GpuMat& src, Scalar_<int> sc, GpuMat& dst, Stream& stream = Stream::Null());

//! pixel by pixel left shift of an image by a constant value
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth
CV_EXPORTS void lshift(const GpuMat& src, Scalar_<int> sc, GpuMat& dst, Stream& stream = Stream::Null());

//! computes per-element minimum of two arrays (dst = min(src1, src2))
CV_EXPORTS void min(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream = Stream::Null());

//! computes per-element minimum of array and scalar (dst = min(src1, src2))
CV_EXPORTS void min(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream = Stream::Null());

//! computes per-element maximum of two arrays (dst = max(src1, src2))
CV_EXPORTS void max(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream = Stream::Null());

//! computes per-element maximum of array and scalar (dst = max(src1, src2))
CV_EXPORTS void max(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream = Stream::Null());

enum { ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA_OVER_PREMUL, ALPHA_IN_PREMUL, ALPHA_OUT_PREMUL,
       ALPHA_ATOP_PREMUL, ALPHA_XOR_PREMUL, ALPHA_PLUS_PREMUL, ALPHA_PREMUL};

//! Composite two images using alpha opacity values contained in each image
//! Supports CV_8UC4, CV_16UC4, CV_32SC4 and CV_32FC4 types
CV_EXPORTS void alphaComp(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, int alpha_op, Stream& stream = Stream::Null());


////////////////////////////// Image processing //////////////////////////////

//! DST[x,y] = SRC[xmap[x,y],ymap[x,y]]
//! supports only CV_32FC1 map type
CV_EXPORTS void remap(const GpuMat& src, GpuMat& dst, const GpuMat& xmap, const GpuMat& ymap,
                      int interpolation, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(),
                      Stream& stream = Stream::Null());

//! Does mean shift filtering on GPU.
CV_EXPORTS void meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr,
                                   TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
                                   Stream& stream = Stream::Null());

//! Does mean shift procedure on GPU.
CV_EXPORTS void meanShiftProc(const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr,
                              TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1),
                              Stream& stream = Stream::Null());

//! Does mean shift segmentation with elimination of small regions.
CV_EXPORTS void meanShiftSegmentation(const GpuMat& src, Mat& dst, int sp, int sr, int minsize,
                                      TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));

//! Does coloring of disparity image: [0..ndisp) -> [0..240, 1, 1] in HSV.
//! Supported types of input disparity: CV_8U, CV_16S.
//! Output disparity has CV_8UC4 type in BGRA format (alpha = 255).
CV_EXPORTS void drawColorDisp(const GpuMat& src_disp, GpuMat& dst_disp, int ndisp, Stream& stream = Stream::Null());

//! Reprojects disparity image to 3D space.
//! Supports CV_8U and CV_16S types of input disparity.
//! The output is a 3- or 4-channel floating-point matrix.
//! Each element of this matrix will contain the 3D coordinates of the point (x,y,z,1), computed from the disparity map.
//! Q is the 4x4 perspective transformation matrix that can be obtained with cvStereoRectify.
CV_EXPORTS void reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, int dst_cn = 4, Stream& stream = Stream::Null());

//! converts image from one color space to another
CV_EXPORTS void cvtColor(const GpuMat& src, GpuMat& dst, int code, int dcn = 0, Stream& stream = Stream::Null());

enum
{
    // Bayer Demosaicing (Malvar, He, and Cutler)
    COLOR_BayerBG2BGR_MHT = 256,
    COLOR_BayerGB2BGR_MHT = 257,
    COLOR_BayerRG2BGR_MHT = 258,
    COLOR_BayerGR2BGR_MHT = 259,

    COLOR_BayerBG2RGB_MHT = COLOR_BayerRG2BGR_MHT,
    COLOR_BayerGB2RGB_MHT = COLOR_BayerGR2BGR_MHT,
    COLOR_BayerRG2RGB_MHT = COLOR_BayerBG2BGR_MHT,
    COLOR_BayerGR2RGB_MHT = COLOR_BayerGB2BGR_MHT,

    COLOR_BayerBG2GRAY_MHT = 260,
    COLOR_BayerGB2GRAY_MHT = 261,
    COLOR_BayerRG2GRAY_MHT = 262,
    COLOR_BayerGR2GRAY_MHT = 263
};
CV_EXPORTS void demosaicing(const GpuMat& src, GpuMat& dst, int code, int dcn = -1, Stream& stream = Stream::Null());

//! swap channels
//! dstOrder - Integer array describing how channel values are permutated. The n-th entry
//!            of the array contains the number of the channel that is stored in the n-th channel of
//!            the output image. E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR
//!            channel order.
CV_EXPORTS void swapChannels(GpuMat& image, const int dstOrder[4], Stream& stream = Stream::Null());

//! Routines for correcting image color gamma
CV_EXPORTS void gammaCorrection(const GpuMat& src, GpuMat& dst, bool forward = true, Stream& stream = Stream::Null());

//! applies fixed threshold to the image
CV_EXPORTS double threshold(const GpuMat& src, GpuMat& dst, double thresh, double maxval, int type, Stream& stream = Stream::Null());

//! resizes the image
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_AREA
CV_EXPORTS void resize(const GpuMat& src, GpuMat& dst, Size dsize, double fx=0, double fy=0, int interpolation = INTER_LINEAR, Stream& stream = Stream::Null());

//! warps the image using affine transformation
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
CV_EXPORTS void warpAffine(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR,
    int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null());

CV_EXPORTS void buildWarpAffineMaps(const Mat& M, bool inverse, Size dsize, GpuMat& xmap, GpuMat& ymap, Stream& stream = Stream::Null());

//! warps the image using perspective transformation
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
CV_EXPORTS void warpPerspective(const GpuMat& src, GpuMat& dst, const Mat& M, Size dsize, int flags = INTER_LINEAR,
    int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null());

CV_EXPORTS void buildWarpPerspectiveMaps(const Mat& M, bool inverse, Size dsize, GpuMat& xmap, GpuMat& ymap, Stream& stream = Stream::Null());

//! builds plane warping maps
CV_EXPORTS void buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, const Mat &T, float scale,
                                   GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null());

//! builds cylindrical warping maps
CV_EXPORTS void buildWarpCylindricalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale,
                                         GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null());

//! builds spherical warping maps
CV_EXPORTS void buildWarpSphericalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale,
                                       GpuMat& map_x, GpuMat& map_y, Stream& stream = Stream::Null());

//! rotates an image around the origin (0,0) and then shifts it
//! supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
//! supports 1, 3 or 4 channels images with CV_8U, CV_16U or CV_32F depth
CV_EXPORTS void rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift = 0, double yShift = 0,
                       int interpolation = INTER_LINEAR, Stream& stream = Stream::Null());

//! copies 2D array to a larger destination array and pads borders with user-specifiable constant
CV_EXPORTS void copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, int borderType,
                               const Scalar& value = Scalar(), Stream& stream = Stream::Null());

//! computes the integral image
//! sum will have CV_32S type, but will contain unsigned int values
//! supports only CV_8UC1 source type
CV_EXPORTS void integral(const GpuMat& src, GpuMat& sum, Stream& stream = Stream::Null());
//! buffered version
CV_EXPORTS void integralBuffered(const GpuMat& src, GpuMat& sum, GpuMat& buffer, Stream& stream = Stream::Null());

//! computes squared integral image
//! result matrix will have 64F type, but will contain 64U values
//! supports source images of 8UC1 type only
CV_EXPORTS void sqrIntegral(const GpuMat& src, GpuMat& sqsum, Stream& stream = Stream::Null());

//! computes vertical sum, supports only CV_32FC1 images
CV_EXPORTS void columnSum(const GpuMat& src, GpuMat& sum);

//! computes the standard deviation of integral images
//! supports only CV_32SC1 source type and CV_32FC1 sqr type
//! output will have CV_32FC1 type
CV_EXPORTS void rectStdDev(const GpuMat& src, const GpuMat& sqr, GpuMat& dst, const Rect& rect, Stream& stream = Stream::Null());

//! computes Harris cornerness criteria at each image pixel
CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101);
CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101);
CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, double k,
                             int borderType = BORDER_REFLECT101, Stream& stream = Stream::Null());

//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria
CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType=BORDER_REFLECT101);
CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType=BORDER_REFLECT101);
CV_EXPORTS void cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize,
    int borderType=BORDER_REFLECT101, Stream& stream = Stream::Null());

//! performs per-element multiplication of two full (not packed) Fourier spectrums
//! supports 32FC2 matrixes only (interleaved format)
CV_EXPORTS void mulSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, bool conjB=false, Stream& stream = Stream::Null());

//! performs per-element multiplication of two full (not packed) Fourier spectrums
//! supports 32FC2 matrixes only (interleaved format)
CV_EXPORTS void mulAndScaleSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, float scale, bool conjB=false, Stream& stream = Stream::Null());

//! Performs a forward or inverse discrete Fourier transform (1D or 2D) of floating point matrix.
//! Param dft_size is the size of DFT transform.
//!
//! If the source matrix is not continous, then additional copy will be done,
//! so to avoid copying ensure the source matrix is continous one. If you want to use
//! preallocated output ensure it is continuous too, otherwise it will be reallocated.
//!
//! Being implemented via CUFFT real-to-complex transform result contains only non-redundant values
//! in CUFFT's format. Result as full complex matrix for such kind of transform cannot be retrieved.
//!
//! For complex-to-real transform it is assumed that the source matrix is packed in CUFFT's format.
CV_EXPORTS void dft(const GpuMat& src, GpuMat& dst, Size dft_size, int flags=0, Stream& stream = Stream::Null());

struct CV_EXPORTS ConvolveBuf
{
    Size result_size;
    Size block_size;
    Size user_block_size;
    Size dft_size;
    int spect_len;

    GpuMat image_spect, templ_spect, result_spect;
    GpuMat image_block, templ_block, result_data;

    void create(Size image_size, Size templ_size);
    static Size estimateBlockSize(Size result_size, Size templ_size);
};


//! computes convolution (or cross-correlation) of two images using discrete Fourier transform
//! supports source images of 32FC1 type only
//! result matrix will have 32FC1 type
CV_EXPORTS void convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr = false);
CV_EXPORTS void convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr, ConvolveBuf& buf, Stream& stream = Stream::Null());

struct CV_EXPORTS MatchTemplateBuf
{
    Size user_block_size;
    GpuMat imagef, templf;
    std::vector<GpuMat> images;
    std::vector<GpuMat> image_sums;
    std::vector<GpuMat> image_sqsums;
};

//! computes the proximity map for the raster template and the image where the template is searched for
CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, Stream &stream = Stream::Null());

//! computes the proximity map for the raster template and the image where the template is searched for
CV_EXPORTS void matchTemplate(const GpuMat& image, const GpuMat& templ, GpuMat& result, int method, MatchTemplateBuf &buf, Stream& stream = Stream::Null());

//! smoothes the source image and downsamples it
CV_EXPORTS void pyrDown(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());

//! upsamples the source image and then smoothes it
CV_EXPORTS void pyrUp(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());

//! performs linear blending of two images
//! to avoid accuracy errors sum of weigths shouldn't be very close to zero
CV_EXPORTS void blendLinear(const GpuMat& img1, const GpuMat& img2, const GpuMat& weights1, const GpuMat& weights2,
                            GpuMat& result, Stream& stream = Stream::Null());

//! Performa bilateral filtering of passsed image
CV_EXPORTS void bilateralFilter(const GpuMat& src, GpuMat& dst, int kernel_size, float sigma_color, float sigma_spatial,
                                int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null());

//! Brute force non-local means algorith (slow but universal)
CV_EXPORTS void nonLocalMeans(const GpuMat& src, GpuMat& dst, float h, int search_window = 21, int block_size = 7, int borderMode = BORDER_DEFAULT, Stream& s = Stream::Null());

//! Fast (but approximate)version of non-local means algorith similar to CPU function (running sums technique)
class CV_EXPORTS FastNonLocalMeansDenoising
{
public:
    //! Simple method, recommended for grayscale images (though it supports multichannel images)
    void simpleMethod(const GpuMat& src, GpuMat& dst, float h, int search_window = 21, int block_size = 7, Stream& s = Stream::Null());

    //! Processes luminance and color components separatelly
    void labMethod(const GpuMat& src, GpuMat& dst, float h_luminance, float h_color, int search_window = 21, int block_size = 7, Stream& s = Stream::Null());

private:

    GpuMat buffer, extended_src_buffer;
    GpuMat lab, l, ab;
};

struct CV_EXPORTS CannyBuf
{
    void create(const Size& image_size, int apperture_size = 3);
    void release();

    GpuMat dx, dy;
    GpuMat mag;
    GpuMat map;
    GpuMat st1, st2;
    GpuMat unused;
    Ptr<FilterEngine_GPU> filterDX, filterDY;

    CannyBuf() {}
    explicit CannyBuf(const Size& image_size, int apperture_size = 3) {create(image_size, apperture_size);}
    CannyBuf(const GpuMat& dx_, const GpuMat& dy_);
};

CV_EXPORTS void Canny(const GpuMat& image, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
CV_EXPORTS void Canny(const GpuMat& image, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
CV_EXPORTS void Canny(const GpuMat& dx, const GpuMat& dy, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false);
CV_EXPORTS void Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& edges, double low_thresh, double high_thresh, bool L2gradient = false);

class CV_EXPORTS ImagePyramid
{
public:
    inline ImagePyramid() : nLayers_(0) {}
    inline ImagePyramid(const GpuMat& img, int nLayers, Stream& stream = Stream::Null())
    {
        build(img, nLayers, stream);
    }

    void build(const GpuMat& img, int nLayers, Stream& stream = Stream::Null());

    void getLayer(GpuMat& outImg, Size outRoi, Stream& stream = Stream::Null()) const;

    inline void release()
    {
        layer0_.release();
        pyramid_.clear();
        nLayers_ = 0;
    }

private:
    GpuMat layer0_;
    std::vector<GpuMat> pyramid_;
    int nLayers_;
};

//! HoughLines

struct HoughLinesBuf
{
    GpuMat accum;
    GpuMat list;
};

CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
CV_EXPORTS void HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines, OutputArray h_votes = noArray());

//! HoughLinesP

//! finds line segments in the black-n-white image using probabalistic Hough transform
CV_EXPORTS void HoughLinesP(const GpuMat& image, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096);

//! HoughCircles

struct HoughCirclesBuf
{
    GpuMat edges;
    GpuMat accum;
    GpuMat list;
    CannyBuf cannyBuf;
};

CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
CV_EXPORTS void HoughCirclesDownload(const GpuMat& d_circles, OutputArray h_circles);

//! finds arbitrary template in the grayscale image using Generalized Hough Transform
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
class CV_EXPORTS GeneralizedHough_GPU : public Algorithm
{
public:
    static Ptr<GeneralizedHough_GPU> create(int method);

    virtual ~GeneralizedHough_GPU();

    //! set template to search
    void setTemplate(const GpuMat& templ, int cannyThreshold = 100, Point templCenter = Point(-1, -1));
    void setTemplate(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter = Point(-1, -1));

    //! find template on image
    void detect(const GpuMat& image, GpuMat& positions, int cannyThreshold = 100);
    void detect(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions);

    void download(const GpuMat& d_positions, OutputArray h_positions, OutputArray h_votes = noArray());

    void release();

protected:
    virtual void setTemplateImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, Point templCenter) = 0;
    virtual void detectImpl(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy, GpuMat& positions) = 0;
    virtual void releaseImpl() = 0;

private:
    GpuMat edges_;
    CannyBuf cannyBuf_;
};

////////////////////////////// Matrix reductions //////////////////////////////

//! computes mean value and standard deviation of all or selected array elements
//! supports only CV_8UC1 type
CV_EXPORTS void meanStdDev(const GpuMat& mtx, Scalar& mean, Scalar& stddev);
//! buffered version
CV_EXPORTS void meanStdDev(const GpuMat& mtx, Scalar& mean, Scalar& stddev, GpuMat& buf);

//! computes norm of array
//! supports NORM_INF, NORM_L1, NORM_L2
//! supports all matrices except 64F
CV_EXPORTS double norm(const GpuMat& src1, int normType=NORM_L2);
CV_EXPORTS double norm(const GpuMat& src1, int normType, GpuMat& buf);
CV_EXPORTS double norm(const GpuMat& src1, int normType, const GpuMat& mask, GpuMat& buf);

//! computes norm of the difference between two arrays
//! supports NORM_INF, NORM_L1, NORM_L2
//! supports only CV_8UC1 type
CV_EXPORTS double norm(const GpuMat& src1, const GpuMat& src2, int normType=NORM_L2);

//! computes sum of array elements
//! supports only single channel images
CV_EXPORTS Scalar sum(const GpuMat& src);
CV_EXPORTS Scalar sum(const GpuMat& src, GpuMat& buf);
CV_EXPORTS Scalar sum(const GpuMat& src, const GpuMat& mask, GpuMat& buf);

//! computes sum of array elements absolute values
//! supports only single channel images
CV_EXPORTS Scalar absSum(const GpuMat& src);
CV_EXPORTS Scalar absSum(const GpuMat& src, GpuMat& buf);
CV_EXPORTS Scalar absSum(const GpuMat& src, const GpuMat& mask, GpuMat& buf);

//! computes squared sum of array elements
//! supports only single channel images
CV_EXPORTS Scalar sqrSum(const GpuMat& src);
CV_EXPORTS Scalar sqrSum(const GpuMat& src, GpuMat& buf);
CV_EXPORTS Scalar sqrSum(const GpuMat& src, const GpuMat& mask, GpuMat& buf);

//! finds global minimum and maximum array elements and returns their values
CV_EXPORTS void minMax(const GpuMat& src, double* minVal, double* maxVal=0, const GpuMat& mask=GpuMat());
CV_EXPORTS void minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask, GpuMat& buf);

//! finds global minimum and maximum array elements and returns their values with locations
CV_EXPORTS void minMaxLoc(const GpuMat& src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0,
                          const GpuMat& mask=GpuMat());
CV_EXPORTS void minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc,
                          const GpuMat& mask, GpuMat& valbuf, GpuMat& locbuf);

//! counts non-zero array elements
CV_EXPORTS int countNonZero(const GpuMat& src);
CV_EXPORTS int countNonZero(const GpuMat& src, GpuMat& buf);

//! reduces a matrix to a vector
CV_EXPORTS void reduce(const GpuMat& mtx, GpuMat& vec, int dim, int reduceOp, int dtype = -1, Stream& stream = Stream::Null());


///////////////////////////// Calibration 3D //////////////////////////////////

CV_EXPORTS void transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec,
                                GpuMat& dst, Stream& stream = Stream::Null());

CV_EXPORTS void projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec,
                              const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst,
                              Stream& stream = Stream::Null());

CV_EXPORTS void solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat,
                               const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess=false,
                               int num_iters=100, float max_dist=8.0, int min_inlier_count=100,
                               std::vector<int>* inliers=NULL);

//////////////////////////////// Image Labeling ////////////////////////////////

//!performs labeling via graph cuts of a 2D regular 4-connected graph.
CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& bottom, GpuMat& labels,
                         GpuMat& buf, Stream& stream = Stream::Null());

//!performs labeling via graph cuts of a 2D regular 8-connected graph.
CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& topLeft, GpuMat& topRight,
                         GpuMat& bottom, GpuMat& bottomLeft, GpuMat& bottomRight,
                         GpuMat& labels,
                         GpuMat& buf, Stream& stream = Stream::Null());

//! compute mask for Generalized Flood fill componetns labeling.
CV_EXPORTS void connectivityMask(const GpuMat& image, GpuMat& mask, const cv::Scalar& lo, const cv::Scalar& hi, Stream& stream = Stream::Null());

//! performs connected componnents labeling.
CV_EXPORTS void labelComponents(const GpuMat& mask, GpuMat& components, int flags = 0, Stream& stream = Stream::Null());

////////////////////////////////// Histograms //////////////////////////////////

//! Compute levels with even distribution. levels will have 1 row and nLevels cols and CV_32SC1 type.
CV_EXPORTS void evenLevels(GpuMat& levels, int nLevels, int lowerLevel, int upperLevel);
//! Calculates histogram with evenly distributed bins for signle channel source.
//! Supports CV_8UC1, CV_16UC1 and CV_16SC1 source types.
//! Output hist will have one row and histSize cols and CV_32SC1 type.
CV_EXPORTS void histEven(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
CV_EXPORTS void histEven(const GpuMat& src, GpuMat& hist, GpuMat& buf, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null());
//! Calculates histogram with evenly distributed bins for four-channel source.
//! All channels of source are processed separately.
//! Supports CV_8UC4, CV_16UC4 and CV_16SC4 source types.
//! Output hist[i] will have one row and histSize[i] cols and CV_32SC1 type.
CV_EXPORTS void histEven(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null());
CV_EXPORTS void histEven(const GpuMat& src, GpuMat hist[4], GpuMat& buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null());
//! Calculates histogram with bins determined by levels array.
//! levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise.
//! Supports CV_8UC1, CV_16UC1, CV_16SC1 and CV_32FC1 source types.
//! Output hist will have one row and (levels.cols-1) cols and CV_32SC1 type.
CV_EXPORTS void histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, Stream& stream = Stream::Null());
CV_EXPORTS void histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, Stream& stream = Stream::Null());
//! Calculates histogram with bins determined by levels array.
//! All levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise.
//! All channels of source are processed separately.
//! Supports CV_8UC4, CV_16UC4, CV_16SC4 and CV_32FC4 source types.
//! Output hist[i] will have one row and (levels[i].cols-1) cols and CV_32SC1 type.
CV_EXPORTS void histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null());
CV_EXPORTS void histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buf, Stream& stream = Stream::Null());

//! Calculates histogram for 8u one channel image
//! Output hist will have one row, 256 cols and CV32SC1 type.
CV_EXPORTS void calcHist(const GpuMat& src, GpuMat& hist, Stream& stream = Stream::Null());
CV_EXPORTS void calcHist(const GpuMat& src, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null());

//! normalizes the grayscale image brightness and contrast by normalizing its histogram
CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null());
CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, Stream& stream = Stream::Null());
CV_EXPORTS void equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null());

class CV_EXPORTS CLAHE : public cv::CLAHE
{
public:
    using cv::CLAHE::apply;
    virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0;
};
CV_EXPORTS Ptr<cv::gpu::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));

//////////////////////////////// StereoBM_GPU ////////////////////////////////

class CV_EXPORTS StereoBM_GPU
{
public:
    enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 };

    enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 };

    //! the default constructor
    StereoBM_GPU();
    //! the full constructor taking the camera-specific preset, number of disparities and the SAD window size. ndisparities must be multiple of 8.
    StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ);

    //! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair
    //! Output disparity has CV_8U type.
    void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());

    //! Some heuristics that tries to estmate
    // if current GPU will be faster than CPU in this algorithm.
    // It queries current active device.
    static bool checkIfGpuCallReasonable();

    int preset;
    int ndisp;
    int winSize;

    // If avergeTexThreshold  == 0 => post procesing is disabled
    // If avergeTexThreshold != 0 then disparity is set 0 in each point (x,y) where for left image
    // SumOfHorizontalGradiensInWindow(x, y, winSize) < (winSize * winSize) * avergeTexThreshold
    // i.e. input left image is low textured.
    float avergeTexThreshold;

private:
    GpuMat minSSD, leBuf, riBuf;
};

////////////////////////// StereoBeliefPropagation ///////////////////////////
// "Efficient Belief Propagation for Early Vision"
// P.Felzenszwalb

class CV_EXPORTS StereoBeliefPropagation
{
public:
    enum { DEFAULT_NDISP  = 64 };
    enum { DEFAULT_ITERS  = 5  };
    enum { DEFAULT_LEVELS = 5  };

    static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels);

    //! the default constructor
    explicit StereoBeliefPropagation(int ndisp  = DEFAULT_NDISP,
                                     int iters  = DEFAULT_ITERS,
                                     int levels = DEFAULT_LEVELS,
                                     int msg_type = CV_32F);

    //! the full constructor taking the number of disparities, number of BP iterations on each level,
    //! number of levels, truncation of data cost, data weight,
    //! truncation of discontinuity cost and discontinuity single jump
    //! DataTerm = data_weight * min(fabs(I2-I1), max_data_term)
    //! DiscTerm = min(disc_single_jump * fabs(f1-f2), max_disc_term)
    //! please see paper for more details
    StereoBeliefPropagation(int ndisp, int iters, int levels,
        float max_data_term, float data_weight,
        float max_disc_term, float disc_single_jump,
        int msg_type = CV_32F);

    //! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
    //! if disparity is empty output type will be CV_16S else output type will be disparity.type().
    void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());


    //! version for user specified data term
    void operator()(const GpuMat& data, GpuMat& disparity, Stream& stream = Stream::Null());

    int ndisp;

    int iters;
    int levels;

    float max_data_term;
    float data_weight;
    float max_disc_term;
    float disc_single_jump;

    int msg_type;
private:
    GpuMat u, d, l, r, u2, d2, l2, r2;
    std::vector<GpuMat> datas;
    GpuMat out;
};

/////////////////////////// StereoConstantSpaceBP ///////////////////////////
// "A Constant-Space Belief Propagation Algorithm for Stereo Matching"
// Qingxiong Yang, Liang Wang, Narendra Ahuja
// http://vision.ai.uiuc.edu/~qyang6/

class CV_EXPORTS StereoConstantSpaceBP
{
public:
    enum { DEFAULT_NDISP    = 128 };
    enum { DEFAULT_ITERS    = 8   };
    enum { DEFAULT_LEVELS   = 4   };
    enum { DEFAULT_NR_PLANE = 4   };

    static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane);

    //! the default constructor
    explicit StereoConstantSpaceBP(int ndisp    = DEFAULT_NDISP,
                                   int iters    = DEFAULT_ITERS,
                                   int levels   = DEFAULT_LEVELS,
                                   int nr_plane = DEFAULT_NR_PLANE,
                                   int msg_type = CV_32F);

    //! the full constructor taking the number of disparities, number of BP iterations on each level,
    //! number of levels, number of active disparity on the first level, truncation of data cost, data weight,
    //! truncation of discontinuity cost, discontinuity single jump and minimum disparity threshold
    StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane,
        float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
        int min_disp_th = 0,
        int msg_type = CV_32F);

    //! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
    //! if disparity is empty output type will be CV_16S else output type will be disparity.type().
    void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null());

    int ndisp;

    int iters;
    int levels;

    int nr_plane;

    float max_data_term;
    float data_weight;
    float max_disc_term;
    float disc_single_jump;

    int min_disp_th;

    int msg_type;

    bool use_local_init_data_cost;
private:
    GpuMat messages_buffers;

    GpuMat temp;
    GpuMat out;
};

/////////////////////////// DisparityBilateralFilter ///////////////////////////
// Disparity map refinement using joint bilateral filtering given a single color image.
// Qingxiong Yang, Liang Wang, Narendra Ahuja
// http://vision.ai.uiuc.edu/~qyang6/

class CV_EXPORTS DisparityBilateralFilter
{
public:
    enum { DEFAULT_NDISP  = 64 };
    enum { DEFAULT_RADIUS = 3 };
    enum { DEFAULT_ITERS  = 1 };

    //! the default constructor
    explicit DisparityBilateralFilter(int ndisp = DEFAULT_NDISP, int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS);

    //! the full constructor taking the number of disparities, filter radius,
    //! number of iterations, truncation of data continuity, truncation of disparity continuity
    //! and filter range sigma
    DisparityBilateralFilter(int ndisp, int radius, int iters, float edge_threshold, float max_disc_threshold, float sigma_range);

    //! the disparity map refinement operator. Refine disparity map using joint bilateral filtering given a single color image.
    //! disparity must have CV_8U or CV_16S type, image must have CV_8UC1 or CV_8UC3 type.
    void operator()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst, Stream& stream = Stream::Null());

private:
    int ndisp;
    int radius;
    int iters;

    float edge_threshold;
    float max_disc_threshold;
    float sigma_range;

    GpuMat table_color;
    GpuMat table_space;
};


//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
struct CV_EXPORTS HOGConfidence
{
   double scale;
   vector<Point> locations;
   vector<double> confidences;
   vector<double> part_scores[4];
};

struct CV_EXPORTS HOGDescriptor
{
    enum { DEFAULT_WIN_SIGMA = -1 };
    enum { DEFAULT_NLEVELS = 64 };
    enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };

    HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16),
                  Size block_stride=Size(8, 8), Size cell_size=Size(8, 8),
                  int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA,
                  double threshold_L2hys=0.2, bool gamma_correction=true,
                  int nlevels=DEFAULT_NLEVELS);

    size_t getDescriptorSize() const;
    size_t getBlockHistogramSize() const;

    void setSVMDetector(const vector<float>& detector);

    static vector<float> getDefaultPeopleDetector();
    static vector<float> getPeopleDetector48x96();
    static vector<float> getPeopleDetector64x128();

    void detect(const GpuMat& img, vector<Point>& found_locations,
                double hit_threshold=0, Size win_stride=Size(),
                Size padding=Size());

    void detectMultiScale(const GpuMat& img, vector<Rect>& found_locations,
                          double hit_threshold=0, Size win_stride=Size(),
                          Size padding=Size(), double scale0=1.05,
                          int group_threshold=2);

    void computeConfidence(const GpuMat& img, vector<Point>& hits, double hit_threshold,
                                                Size win_stride, Size padding, vector<Point>& locations, vector<double>& confidences);

    void computeConfidenceMultiScale(const GpuMat& img, vector<Rect>& found_locations,
                                                                    double hit_threshold, Size win_stride, Size padding,
                                                                    vector<HOGConfidence> &conf_out, int group_threshold);

    void getDescriptors(const GpuMat& img, Size win_stride,
                        GpuMat& descriptors,
                        int descr_format=DESCR_FORMAT_COL_BY_COL);

    Size win_size;
    Size block_size;
    Size block_stride;
    Size cell_size;
    int nbins;
    double win_sigma;
    double threshold_L2hys;
    bool gamma_correction;
    int nlevels;

protected:
    void computeBlockHistograms(const GpuMat& img);
    void computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle);

    double getWinSigma() const;
    bool checkDetectorSize() const;

    static int numPartsWithin(int size, int part_size, int stride);
    static Size numPartsWithin(Size size, Size part_size, Size stride);

    // Coefficients of the separating plane
    float free_coef;
    GpuMat detector;

    // Results of the last classification step
    GpuMat labels, labels_buf;
    Mat labels_host;

    // Results of the last histogram evaluation step
    GpuMat block_hists, block_hists_buf;

    // Gradients conputation results
    GpuMat grad, qangle, grad_buf, qangle_buf;

    // returns subbuffer with required size, reallocates buffer if nessesary.
    static GpuMat getBuffer(const Size& sz, int type, GpuMat& buf);
    static GpuMat getBuffer(int rows, int cols, int type, GpuMat& buf);

    std::vector<GpuMat> image_scales;
};


////////////////////////////////// BruteForceMatcher //////////////////////////////////

class CV_EXPORTS BruteForceMatcher_GPU_base
{
public:
    enum DistType {L1Dist = 0, L2Dist, HammingDist};

    explicit BruteForceMatcher_GPU_base(DistType distType = L2Dist);

    // Add descriptors to train descriptor collection
    void add(const std::vector<GpuMat>& descCollection);

    // Get train descriptors collection
    const std::vector<GpuMat>& getTrainDescriptors() const;

    // Clear train descriptors collection
    void clear();

    // Return true if there are not train descriptors in collection
    bool empty() const;

    // Return true if the matcher supports mask in match methods
    bool isMaskSupported() const;

    // Find one best match for each query descriptor
    void matchSingle(const GpuMat& query, const GpuMat& train,
        GpuMat& trainIdx, GpuMat& distance,
        const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());

    // Download trainIdx and distance and convert it to CPU vector with DMatch
    static void matchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector<DMatch>& matches);
    // Convert trainIdx and distance to vector with DMatch
    static void matchConvert(const Mat& trainIdx, const Mat& distance, std::vector<DMatch>& matches);

    // Find one best match for each query descriptor
    void match(const GpuMat& query, const GpuMat& train, std::vector<DMatch>& matches, const GpuMat& mask = GpuMat());

    // Make gpu collection of trains and masks in suitable format for matchCollection function
    void makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection, const std::vector<GpuMat>& masks = std::vector<GpuMat>());

    // Find one best match from train collection for each query descriptor
    void matchCollection(const GpuMat& query, const GpuMat& trainCollection,
        GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
        const GpuMat& masks = GpuMat(), Stream& stream = Stream::Null());

    // Download trainIdx, imgIdx and distance and convert it to vector with DMatch
    static void matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector<DMatch>& matches);
    // Convert trainIdx, imgIdx and distance to vector with DMatch
    static void matchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector<DMatch>& matches);

    // Find one best match from train collection for each query descriptor.
    void match(const GpuMat& query, std::vector<DMatch>& matches, const std::vector<GpuMat>& masks = std::vector<GpuMat>());

    // Find k best matches for each query descriptor (in increasing order of distances)
    void knnMatchSingle(const GpuMat& query, const GpuMat& train,
        GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k,
        const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());

    // Download trainIdx and distance and convert it to vector with DMatch
    // compactResult is used when mask is not empty. If compactResult is false matches
    // vector will have the same size as queryDescriptors rows. If compactResult is true
    // matches vector will not contain matches for fully masked out query descriptors.
    static void knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
    // Convert trainIdx and distance to vector with DMatch
    static void knnMatchConvert(const Mat& trainIdx, const Mat& distance,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);

    // Find k best matches for each query descriptor (in increasing order of distances).
    // compactResult is used when mask is not empty. If compactResult is false matches
    // vector will have the same size as queryDescriptors rows. If compactResult is true
    // matches vector will not contain matches for fully masked out query descriptors.
    void knnMatch(const GpuMat& query, const GpuMat& train,
        std::vector< std::vector<DMatch> >& matches, int k, const GpuMat& mask = GpuMat(),
        bool compactResult = false);

    // Find k best matches from train collection for each query descriptor (in increasing order of distances)
    void knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection,
        GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
        const GpuMat& maskCollection = GpuMat(), Stream& stream = Stream::Null());

    // Download trainIdx and distance and convert it to vector with DMatch
    // compactResult is used when mask is not empty. If compactResult is false matches
    // vector will have the same size as queryDescriptors rows. If compactResult is true
    // matches vector will not contain matches for fully masked out query descriptors.
    static void knnMatch2Download(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
    // Convert trainIdx and distance to vector with DMatch
    static void knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);

    // Find k best matches  for each query descriptor (in increasing order of distances).
    // compactResult is used when mask is not empty. If compactResult is false matches
    // vector will have the same size as queryDescriptors rows. If compactResult is true
    // matches vector will not contain matches for fully masked out query descriptors.
    void knnMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, int k,
        const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);

    // Find best matches for each query descriptor which have distance less than maxDistance.
    // nMatches.at<int>(0, queryIdx) will contain matches count for queryIdx.
    // carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches,
    // because it didn't have enough memory.
    // If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10),
    // otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
    // Matches doesn't sorted.
    void radiusMatchSingle(const GpuMat& query, const GpuMat& train,
        GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
        const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null());

    // Download trainIdx, nMatches and distance and convert it to vector with DMatch.
    // matches will be sorted in increasing order of distances.
    // compactResult is used when mask is not empty. If compactResult is false matches
    // vector will have the same size as queryDescriptors rows. If compactResult is true
    // matches vector will not contain matches for fully masked out query descriptors.
    static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, const GpuMat& nMatches,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
    // Convert trainIdx, nMatches and distance to vector with DMatch.
    static void radiusMatchConvert(const Mat& trainIdx, const Mat& distance, const Mat& nMatches,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);

    // Find best matches for each query descriptor which have distance less than maxDistance
    // in increasing order of distances).
    void radiusMatch(const GpuMat& query, const GpuMat& train,
        std::vector< std::vector<DMatch> >& matches, float maxDistance,
        const GpuMat& mask = GpuMat(), bool compactResult = false);

    // Find best matches for each query descriptor which have distance less than maxDistance.
    // If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10),
    // otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
    // Matches doesn't sorted.
    void radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance,
        const std::vector<GpuMat>& masks = std::vector<GpuMat>(), Stream& stream = Stream::Null());

    // Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch.
    // matches will be sorted in increasing order of distances.
    // compactResult is used when mask is not empty. If compactResult is false matches
    // vector will have the same size as queryDescriptors rows. If compactResult is true
    // matches vector will not contain matches for fully masked out query descriptors.
    static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, const GpuMat& nMatches,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
    // Convert trainIdx, nMatches and distance to vector with DMatch.
    static void radiusMatchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, const Mat& nMatches,
        std::vector< std::vector<DMatch> >& matches, bool compactResult = false);

    // Find best matches from train collection for each query descriptor which have distance less than
    // maxDistance (in increasing order of distances).
    void radiusMatch(const GpuMat& query, std::vector< std::vector<DMatch> >& matches, float maxDistance,
        const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);

    DistType distType;

private:
    std::vector<GpuMat> trainDescCollection;
};

template <class Distance>
class CV_EXPORTS BruteForceMatcher_GPU;

template <typename T>
class CV_EXPORTS BruteForceMatcher_GPU< L1<T> > : public BruteForceMatcher_GPU_base
{
public:
    explicit BruteForceMatcher_GPU() : BruteForceMatcher_GPU_base(L1Dist) {}
    explicit BruteForceMatcher_GPU(L1<T> /*d*/) : BruteForceMatcher_GPU_base(L1Dist) {}
};
template <typename T>
class CV_EXPORTS BruteForceMatcher_GPU< L2<T> > : public BruteForceMatcher_GPU_base
{
public:
    explicit BruteForceMatcher_GPU() : BruteForceMatcher_GPU_base(L2Dist) {}
    explicit BruteForceMatcher_GPU(L2<T> /*d*/) : BruteForceMatcher_GPU_base(L2Dist) {}
};
template <> class CV_EXPORTS BruteForceMatcher_GPU< Hamming > : public BruteForceMatcher_GPU_base
{
public:
    explicit BruteForceMatcher_GPU() : BruteForceMatcher_GPU_base(HammingDist) {}
    explicit BruteForceMatcher_GPU(Hamming /*d*/) : BruteForceMatcher_GPU_base(HammingDist) {}
};

class CV_EXPORTS BFMatcher_GPU : public BruteForceMatcher_GPU_base
{
public:
    explicit BFMatcher_GPU(int norm = NORM_L2) : BruteForceMatcher_GPU_base(norm == NORM_L1 ? L1Dist : norm == NORM_L2 ? L2Dist : HammingDist) {}
};

////////////////////////////////// CascadeClassifier_GPU //////////////////////////////////////////
// The cascade classifier class for object detection: supports old haar and new lbp xlm formats and nvbin for haar cascades olny.
class CV_EXPORTS CascadeClassifier_GPU
{
public:
    CascadeClassifier_GPU();
    CascadeClassifier_GPU(const std::string& filename);
    ~CascadeClassifier_GPU();

    bool empty() const;
    bool load(const std::string& filename);
    void release();

    /* returns number of detected objects */
    int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, double scaleFactor = 1.2, int minNeighbors = 4, Size minSize = Size());
    int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize = Size(), double scaleFactor = 1.1, int minNeighbors = 4);

    bool findLargestObject;
    bool visualizeInPlace;

    Size getClassifierSize() const;

private:
    struct CascadeClassifierImpl;
    CascadeClassifierImpl* impl;
    struct HaarCascade;
    struct LbpCascade;
    friend class CascadeClassifier_GPU_LBP;
};

////////////////////////////////// FAST //////////////////////////////////////////

class CV_EXPORTS FAST_GPU
{
public:
    enum
    {
        LOCATION_ROW = 0,
        RESPONSE_ROW,
        ROWS_COUNT
    };

    // all features have same size
    static const int FEATURE_SIZE = 7;

    explicit FAST_GPU(int threshold, bool nonmaxSupression = true, double keypointsRatio = 0.05);

    //! finds the keypoints using FAST detector
    //! supports only CV_8UC1 images
    void operator ()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
    void operator ()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints);

    //! download keypoints from device to host memory
    void downloadKeypoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);

    //! convert keypoints to KeyPoint vector
    void convertKeypoints(const Mat& h_keypoints, std::vector<KeyPoint>& keypoints);

    //! release temporary buffer's memory
    void release();

    bool nonmaxSupression;

    int threshold;

    //! max keypoints = keypointsRatio * img.size().area()
    double keypointsRatio;

    //! find keypoints and compute it's response if nonmaxSupression is true
    //! return count of detected keypoints
    int calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask);

    //! get final array of keypoints
    //! performs nonmax supression if needed
    //! return final count of keypoints
    int getKeyPoints(GpuMat& keypoints);

private:
    GpuMat kpLoc_;
    int count_;

    GpuMat score_;

    GpuMat d_keypoints_;
};

////////////////////////////////// ORB //////////////////////////////////////////

class CV_EXPORTS ORB_GPU
{
public:
    enum
    {
        X_ROW = 0,
        Y_ROW,
        RESPONSE_ROW,
        ANGLE_ROW,
        OCTAVE_ROW,
        SIZE_ROW,
        ROWS_COUNT
    };

    enum
    {
        DEFAULT_FAST_THRESHOLD = 20
    };

    //! Constructor
    explicit ORB_GPU(int nFeatures = 500, float scaleFactor = 1.2f, int nLevels = 8, int edgeThreshold = 31,
                     int firstLevel = 0, int WTA_K = 2, int scoreType = 0, int patchSize = 31);

    //! Compute the ORB features on an image
    //! image - the image to compute the features (supports only CV_8UC1 images)
    //! mask - the mask to apply
    //! keypoints - the resulting keypoints
    void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
    void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);

    //! Compute the ORB features and descriptors on an image
    //! image - the image to compute the features (supports only CV_8UC1 images)
    //! mask - the mask to apply
    //! keypoints - the resulting keypoints
    //! descriptors - descriptors array
    void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors);
    void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors);

    //! download keypoints from device to host memory
    void downloadKeyPoints(GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);

    //! convert keypoints to KeyPoint vector
    void convertKeyPoints(Mat& d_keypoints, std::vector<KeyPoint>& keypoints);

    //! returns the descriptor size in bytes
    inline int descriptorSize() const { return kBytes; }

    inline void setFastParams(int threshold, bool nonmaxSupression = true)
    {
        fastDetector_.threshold = threshold;
        fastDetector_.nonmaxSupression = nonmaxSupression;
    }

    //! release temporary buffer's memory
    void release();

    //! if true, image will be blurred before descriptors calculation
    bool blurForDescriptor;

private:
    enum { kBytes = 32 };

    void buildScalePyramids(const GpuMat& image, const GpuMat& mask);

    void computeKeyPointsPyramid();

    void computeDescriptors(GpuMat& descriptors);

    void mergeKeyPoints(GpuMat& keypoints);

    int nFeatures_;
    float scaleFactor_;
    int nLevels_;
    int edgeThreshold_;
    int firstLevel_;
    int WTA_K_;
    int scoreType_;
    int patchSize_;

    // The number of desired features per scale
    std::vector<size_t> n_features_per_level_;

    // Points to compute BRIEF descriptors from
    GpuMat pattern_;

    std::vector<GpuMat> imagePyr_;
    std::vector<GpuMat> maskPyr_;

    GpuMat buf_;

    std::vector<GpuMat> keyPointsPyr_;
    std::vector<int> keyPointsCount_;

    FAST_GPU fastDetector_;

    Ptr<FilterEngine_GPU> blurFilter;

    GpuMat d_keypoints_;
};

////////////////////////////////// Optical Flow //////////////////////////////////////////

class CV_EXPORTS BroxOpticalFlow
{
public:
    BroxOpticalFlow(float alpha_, float gamma_, float scale_factor_, int inner_iterations_, int outer_iterations_, int solver_iterations_) :
        alpha(alpha_), gamma(gamma_), scale_factor(scale_factor_),
        inner_iterations(inner_iterations_), outer_iterations(outer_iterations_), solver_iterations(solver_iterations_)
    {
    }

    //! Compute optical flow
    //! frame0 - source frame (supports only CV_32FC1 type)
    //! frame1 - frame to track (with the same size and type as frame0)
    //! u      - flow horizontal component (along x axis)
    //! v      - flow vertical component (along y axis)
    void operator ()(const GpuMat& frame0, const GpuMat& frame1, GpuMat& u, GpuMat& v, Stream& stream = Stream::Null());

    //! flow smoothness
    float alpha;

    //! gradient constancy importance
    float gamma;

    //! pyramid scale factor
    float scale_factor;

    //! number of lagged non-linearity iterations (inner loop)
    int inner_iterations;

    //! number of warping iterations (number of pyramid levels)
    int outer_iterations;

    //! number of linear system solver iterations
    int solver_iterations;

    GpuMat buf;
};

class CV_EXPORTS GoodFeaturesToTrackDetector_GPU
{
public:
    explicit GoodFeaturesToTrackDetector_GPU(int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0,
        int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04);

    //! return 1 rows matrix with CV_32FC2 type
    void operator ()(const GpuMat& image, GpuMat& corners, const GpuMat& mask = GpuMat());

    int maxCorners;
    double qualityLevel;
    double minDistance;

    int blockSize;
    bool useHarrisDetector;
    double harrisK;

    void releaseMemory()
    {
        Dx_.release();
        Dy_.release();
        buf_.release();
        eig_.release();
        minMaxbuf_.release();
        tmpCorners_.release();
    }

private:
    GpuMat Dx_;
    GpuMat Dy_;
    GpuMat buf_;
    GpuMat eig_;
    GpuMat minMaxbuf_;
    GpuMat tmpCorners_;
};

inline GoodFeaturesToTrackDetector_GPU::GoodFeaturesToTrackDetector_GPU(int maxCorners_, double qualityLevel_, double minDistance_,
        int blockSize_, bool useHarrisDetector_, double harrisK_)
{
    maxCorners = maxCorners_;
    qualityLevel = qualityLevel_;
    minDistance = minDistance_;
    blockSize = blockSize_;
    useHarrisDetector = useHarrisDetector_;
    harrisK = harrisK_;
}


class CV_EXPORTS PyrLKOpticalFlow
{
public:
    PyrLKOpticalFlow();

    void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts,
        GpuMat& status, GpuMat* err = 0);

    void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err = 0);

    void releaseMemory();

    Size winSize;
    int maxLevel;
    int iters;
    double derivLambda; //unused
    bool useInitialFlow;
    float minEigThreshold; //unused
    bool getMinEigenVals;  //unused

private:
    GpuMat uPyr_[2];
    vector<GpuMat> prevPyr_;
    vector<GpuMat> nextPyr_;
    GpuMat vPyr_[2];
    vector<GpuMat> buf_;
    vector<GpuMat> unused;
    bool isDeviceArch11_;
};


class CV_EXPORTS FarnebackOpticalFlow
{
public:
    FarnebackOpticalFlow()
    {
        numLevels = 5;
        pyrScale = 0.5;
        fastPyramids = false;
        winSize = 13;
        numIters = 10;
        polyN = 5;
        polySigma = 1.1;
        flags = 0;
        isDeviceArch11_ = !DeviceInfo().supports(FEATURE_SET_COMPUTE_12);
    }

    int numLevels;
    double pyrScale;
    bool fastPyramids;
    int winSize;
    int numIters;
    int polyN;
    double polySigma;
    int flags;

    void operator ()(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s = Stream::Null());

    void releaseMemory()
    {
        frames_[0].release();
        frames_[1].release();
        pyrLevel_[0].release();
        pyrLevel_[1].release();
        M_.release();
        bufM_.release();
        R_[0].release();
        R_[1].release();
        blurredFrame_[0].release();
        blurredFrame_[1].release();
        pyramid0_.clear();
        pyramid1_.clear();
    }

private:
    void prepareGaussian(
            int n, double sigma, float *g, float *xg, float *xxg,
            double &ig11, double &ig03, double &ig33, double &ig55);

    void setPolynomialExpansionConsts(int n, double sigma);

    void updateFlow_boxFilter(
            const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
            GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);

    void updateFlow_gaussianBlur(
            const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
            GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);

    GpuMat frames_[2];
    GpuMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2];
    std::vector<GpuMat> pyramid0_, pyramid1_;

    bool isDeviceArch11_;
};


// Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method
//
// see reference:
//   [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
//   [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
class CV_EXPORTS OpticalFlowDual_TVL1_GPU
{
public:
    OpticalFlowDual_TVL1_GPU();

    void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy);

    void collectGarbage();

    /**
     * Time step of the numerical scheme.
     */
    double tau;

    /**
     * Weight parameter for the data term, attachment parameter.
     * This is the most relevant parameter, which determines the smoothness of the output.
     * The smaller this parameter is, the smoother the solutions we obtain.
     * It depends on the range of motions of the images, so its value should be adapted to each image sequence.
     */
    double lambda;

    /**
     * Weight parameter for (u - v)^2, tightness parameter.
     * It serves as a link between the attachment and the regularization terms.
     * In theory, it should have a small value in order to maintain both parts in correspondence.
     * The method is stable for a large range of values of this parameter.
     */
    double theta;

    /**
     * Number of scales used to create the pyramid of images.
     */
    int nscales;

    /**
     * Number of warpings per scale.
     * Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
     * This is a parameter that assures the stability of the method.
     * It also affects the running time, so it is a compromise between speed and accuracy.
     */
    int warps;

    /**
     * Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
     * A small value will yield more accurate solutions at the expense of a slower convergence.
     */
    double epsilon;

    /**
     * Stopping criterion iterations number used in the numerical scheme.
     */
    int iterations;

    bool useInitialFlow;

private:
    void procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2);

    std::vector<GpuMat> I0s;
    std::vector<GpuMat> I1s;
    std::vector<GpuMat> u1s;
    std::vector<GpuMat> u2s;

    GpuMat I1x_buf;
    GpuMat I1y_buf;

    GpuMat I1w_buf;
    GpuMat I1wx_buf;
    GpuMat I1wy_buf;

    GpuMat grad_buf;
    GpuMat rho_c_buf;

    GpuMat p11_buf;
    GpuMat p12_buf;
    GpuMat p21_buf;
    GpuMat p22_buf;

    GpuMat diff_buf;
    GpuMat norm_buf;
};


//! Calculates optical flow for 2 images using block matching algorithm */
CV_EXPORTS void calcOpticalFlowBM(const GpuMat& prev, const GpuMat& curr,
                                  Size block_size, Size shift_size, Size max_range, bool use_previous,
                                  GpuMat& velx, GpuMat& vely, GpuMat& buf,
                                  Stream& stream = Stream::Null());

class CV_EXPORTS FastOpticalFlowBM
{
public:
    void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, int search_window = 21, int block_window = 7, Stream& s = Stream::Null());

private:
    GpuMat buffer;
    GpuMat extended_I0;
    GpuMat extended_I1;
};


//! Interpolate frames (images) using provided optical flow (displacement field).
//! frame0   - frame 0 (32-bit floating point images, single channel)
//! frame1   - frame 1 (the same type and size)
//! fu       - forward horizontal displacement
//! fv       - forward vertical displacement
//! bu       - backward horizontal displacement
//! bv       - backward vertical displacement
//! pos      - new frame position
//! newFrame - new frame
//! buf      - temporary buffer, will have width x 6*height size, CV_32FC1 type and contain 6 GpuMat;
//!            occlusion masks            0, occlusion masks            1,
//!            interpolated forward flow  0, interpolated forward flow  1,
//!            interpolated backward flow 0, interpolated backward flow 1
//!
CV_EXPORTS void interpolateFrames(const GpuMat& frame0, const GpuMat& frame1,
                                  const GpuMat& fu, const GpuMat& fv,
                                  const GpuMat& bu, const GpuMat& bv,
                                  float pos, GpuMat& newFrame, GpuMat& buf,
                                  Stream& stream = Stream::Null());

CV_EXPORTS void createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors);


//////////////////////// Background/foreground segmentation ////////////////////////

// Foreground Object Detection from Videos Containing Complex Background.
// Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian.
// ACM MM2003 9p
class CV_EXPORTS FGDStatModel
{
public:
    struct CV_EXPORTS Params
    {
        int Lc;  // Quantized levels per 'color' component. Power of two, typically 32, 64 or 128.
        int N1c; // Number of color vectors used to model normal background color variation at a given pixel.
        int N2c; // Number of color vectors retained at given pixel.  Must be > N1c, typically ~ 5/3 of N1c.
        // Used to allow the first N1c vectors to adapt over time to changing background.

        int Lcc;  // Quantized levels per 'color co-occurrence' component.  Power of two, typically 16, 32 or 64.
        int N1cc; // Number of color co-occurrence vectors used to model normal background color variation at a given pixel.
        int N2cc; // Number of color co-occurrence vectors retained at given pixel.  Must be > N1cc, typically ~ 5/3 of N1cc.
        // Used to allow the first N1cc vectors to adapt over time to changing background.

        bool is_obj_without_holes; // If TRUE we ignore holes within foreground blobs. Defaults to TRUE.
        int perform_morphing;     // Number of erode-dilate-erode foreground-blob cleanup iterations.
        // These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1.

        float alpha1; // How quickly we forget old background pixel values seen. Typically set to 0.1.
        float alpha2; // "Controls speed of feature learning". Depends on T. Typical value circa 0.005.
        float alpha3; // Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1.

        float delta;   // Affects color and color co-occurrence quantization, typically set to 2.
        float T;       // A percentage value which determines when new features can be recognized as new background. (Typically 0.9).
        float minArea; // Discard foreground blobs whose bounding box is smaller than this threshold.

        // default Params
        Params();
    };

    // out_cn - channels count in output result (can be 3 or 4)
    // 4-channels require more memory, but a bit faster
    explicit FGDStatModel(int out_cn = 3);
    explicit FGDStatModel(const cv::gpu::GpuMat& firstFrame, const Params& params = Params(), int out_cn = 3);

    ~FGDStatModel();

    void create(const cv::gpu::GpuMat& firstFrame, const Params& params = Params());
    void release();

    int update(const cv::gpu::GpuMat& curFrame);

    //8UC3 or 8UC4 reference background image
    cv::gpu::GpuMat background;

    //8UC1 foreground image
    cv::gpu::GpuMat foreground;

    std::vector< std::vector<cv::Point> > foreground_regions;

private:
    FGDStatModel(const FGDStatModel&);
    FGDStatModel& operator=(const FGDStatModel&);

    class Impl;
    std::auto_ptr<Impl> impl_;
};

/*!
 Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm

 The class implements the following algorithm:
 "An improved adaptive background mixture model for real-time tracking with shadow detection"
 P. KadewTraKuPong and R. Bowden,
 Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001."
 http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
*/
class CV_EXPORTS MOG_GPU
{
public:
    //! the default constructor
    MOG_GPU(int nmixtures = -1);

    //! re-initiaization method
    void initialize(Size frameSize, int frameType);

    //! the update operator
    void operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate = 0.0f, Stream& stream = Stream::Null());

    //! computes a background image which are the mean of all background gaussians
    void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const;

    //! releases all inner buffers
    void release();

    int history;
    float varThreshold;
    float backgroundRatio;
    float noiseSigma;

private:
    int nmixtures_;

    Size frameSize_;
    int frameType_;
    int nframes_;

    GpuMat weight_;
    GpuMat sortKey_;
    GpuMat mean_;
    GpuMat var_;
};

/*!
 The class implements the following algorithm:
 "Improved adaptive Gausian mixture model for background subtraction"
 Z.Zivkovic
 International Conference Pattern Recognition, UK, August, 2004.
 http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
*/
class CV_EXPORTS MOG2_GPU
{
public:
    //! the default constructor
    MOG2_GPU(int nmixtures = -1);

    //! re-initiaization method
    void initialize(Size frameSize, int frameType);

    //! the update operator
    void operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate = -1.0f, Stream& stream = Stream::Null());

    //! computes a background image which are the mean of all background gaussians
    void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const;

    //! releases all inner buffers
    void release();

    // parameters
    // you should call initialize after parameters changes

    int history;

    //! here it is the maximum allowed number of mixture components.
    //! Actual number is determined dynamically per pixel
    float varThreshold;
    // threshold on the squared Mahalanobis distance to decide if it is well described
    // by the background model or not. Related to Cthr from the paper.
    // This does not influence the update of the background. A typical value could be 4 sigma
    // and that is varThreshold=4*4=16; Corresponds to Tb in the paper.

    /////////////////////////
    // less important parameters - things you might change but be carefull
    ////////////////////////

    float backgroundRatio;
    // corresponds to fTB=1-cf from the paper
    // TB - threshold when the component becomes significant enough to be included into
    // the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
    // For alpha=0.001 it means that the mode should exist for approximately 105 frames before
    // it is considered foreground
    // float noiseSigma;
    float varThresholdGen;

    //correspondts to Tg - threshold on the squared Mahalan. dist. to decide
    //when a sample is close to the existing components. If it is not close
    //to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
    //Smaller Tg leads to more generated components and higher Tg might make
    //lead to small number of components but they can grow too large
    float fVarInit;
    float fVarMin;
    float fVarMax;

    //initial variance  for the newly generated components.
    //It will will influence the speed of adaptation. A good guess should be made.
    //A simple way is to estimate the typical standard deviation from the images.
    //I used here 10 as a reasonable value
    // min and max can be used to further control the variance
    float fCT; //CT - complexity reduction prior
    //this is related to the number of samples needed to accept that a component
    //actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
    //the standard Stauffer&Grimson algorithm (maybe not exact but very similar)

    //shadow detection parameters
    bool bShadowDetection; //default 1 - do shadow detection
    unsigned char nShadowDetection; //do shadow detection - insert this value as the detection result - 127 default value
    float fTau;
    // Tau - shadow threshold. The shadow is detected if the pixel is darker
    //version of the background. Tau is a threshold on how much darker the shadow can be.
    //Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
    //See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.

private:
    int nmixtures_;

    Size frameSize_;
    int frameType_;
    int nframes_;

    GpuMat weight_;
    GpuMat variance_;
    GpuMat mean_;

    GpuMat bgmodelUsedModes_; //keep track of number of modes per pixel
};

/**
 * Background Subtractor module. Takes a series of images and returns a sequence of mask (8UC1)
 * images of the same size, where 255 indicates Foreground and 0 represents Background.
 * This class implements an algorithm described in "Visual Tracking of Human Visitors under
 * Variable-Lighting Conditions for a Responsive Audio Art Installation," A. Godbehere,
 * A. Matsukawa, K. Goldberg, American Control Conference, Montreal, June 2012.
 */
class CV_EXPORTS GMG_GPU
{
public:
    GMG_GPU();

    /**
     * Validate parameters and set up data structures for appropriate frame size.
     * @param frameSize Input frame size
     * @param min       Minimum value taken on by pixels in image sequence. Usually 0
     * @param max       Maximum value taken on by pixels in image sequence. e.g. 1.0 or 255
     */
    void initialize(Size frameSize, float min = 0.0f, float max = 255.0f);

    /**
     * Performs single-frame background subtraction and builds up a statistical background image
     * model.
     * @param frame        Input frame
     * @param fgmask       Output mask image representing foreground and background pixels
     * @param stream       Stream for the asynchronous version
     */
    void operator ()(const GpuMat& frame, GpuMat& fgmask, float learningRate = -1.0f, Stream& stream = Stream::Null());

    //! Releases all inner buffers
    void release();

    //! Total number of distinct colors to maintain in histogram.
    int maxFeatures;

    //! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
    float learningRate;

    //! Number of frames of video to use to initialize histograms.
    int numInitializationFrames;

    //! Number of discrete levels in each channel to be used in histograms.
    int quantizationLevels;

    //! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
    float backgroundPrior;

    //! Value above which pixel is determined to be FG.
    float decisionThreshold;

    //! Smoothing radius, in pixels, for cleaning up FG image.
    int smoothingRadius;

    //! Perform background model update.
    bool updateBackgroundModel;

private:
    float maxVal_, minVal_;

    Size frameSize_;

    int frameNum_;

    GpuMat nfeatures_;
    GpuMat colors_;
    GpuMat weights_;

    Ptr<FilterEngine_GPU> boxFilter_;
    GpuMat buf_;
};

////////////////////////////////// Video Encoding //////////////////////////////////

// Works only under Windows
// Supports olny H264 video codec and AVI files
class CV_EXPORTS VideoWriter_GPU
{
public:
    struct EncoderParams;

    // Callbacks for video encoder, use it if you want to work with raw video stream
    class EncoderCallBack;

    enum SurfaceFormat
    {
        SF_UYVY = 0,
        SF_YUY2,
        SF_YV12,
        SF_NV12,
        SF_IYUV,
        SF_BGR,
        SF_GRAY = SF_BGR
    };

    VideoWriter_GPU();
    VideoWriter_GPU(const std::string& fileName, cv::Size frameSize, double fps, SurfaceFormat format = SF_BGR);
    VideoWriter_GPU(const std::string& fileName, cv::Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);
    VideoWriter_GPU(const cv::Ptr<EncoderCallBack>& encoderCallback, cv::Size frameSize, double fps, SurfaceFormat format = SF_BGR);
    VideoWriter_GPU(const cv::Ptr<EncoderCallBack>& encoderCallback, cv::Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);
    ~VideoWriter_GPU();

    // all methods throws cv::Exception if error occurs
    void open(const std::string& fileName, cv::Size frameSize, double fps, SurfaceFormat format = SF_BGR);
    void open(const std::string& fileName, cv::Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);
    void open(const cv::Ptr<EncoderCallBack>& encoderCallback, cv::Size frameSize, double fps, SurfaceFormat format = SF_BGR);
    void open(const cv::Ptr<EncoderCallBack>& encoderCallback, cv::Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);

    bool isOpened() const;
    void close();

    void write(const cv::gpu::GpuMat& image, bool lastFrame = false);

    struct CV_EXPORTS EncoderParams
    {
        int       P_Interval;      //    NVVE_P_INTERVAL,
        int       IDR_Period;      //    NVVE_IDR_PERIOD,
        int       DynamicGOP;      //    NVVE_DYNAMIC_GOP,
        int       RCType;          //    NVVE_RC_TYPE,
        int       AvgBitrate;      //    NVVE_AVG_BITRATE,
        int       PeakBitrate;     //    NVVE_PEAK_BITRATE,
        int       QP_Level_Intra;  //    NVVE_QP_LEVEL_INTRA,
        int       QP_Level_InterP; //    NVVE_QP_LEVEL_INTER_P,
        int       QP_Level_InterB; //    NVVE_QP_LEVEL_INTER_B,
        int       DeblockMode;     //    NVVE_DEBLOCK_MODE,
        int       ProfileLevel;    //    NVVE_PROFILE_LEVEL,
        int       ForceIntra;      //    NVVE_FORCE_INTRA,
        int       ForceIDR;        //    NVVE_FORCE_IDR,
        int       ClearStat;       //    NVVE_CLEAR_STAT,
        int       DIMode;          //    NVVE_SET_DEINTERLACE,
        int       Presets;         //    NVVE_PRESETS,
        int       DisableCabac;    //    NVVE_DISABLE_CABAC,
        int       NaluFramingType; //    NVVE_CONFIGURE_NALU_FRAMING_TYPE
        int       DisableSPSPPS;   //    NVVE_DISABLE_SPS_PPS

        EncoderParams();
        explicit EncoderParams(const std::string& configFile);

        void load(const std::string& configFile);
        void save(const std::string& configFile) const;
    };

    EncoderParams getParams() const;

    class CV_EXPORTS EncoderCallBack
    {
    public:
        enum PicType
        {
            IFRAME = 1,
            PFRAME = 2,
            BFRAME = 3
        };

        virtual ~EncoderCallBack() {}

        // callback function to signal the start of bitstream that is to be encoded
        // must return pointer to buffer
        virtual uchar* acquireBitStream(int* bufferSize) = 0;

        // callback function to signal that the encoded bitstream is ready to be written to file
        virtual void releaseBitStream(unsigned char* data, int size) = 0;

        // callback function to signal that the encoding operation on the frame has started
        virtual void onBeginFrame(int frameNumber, PicType picType) = 0;

        // callback function signals that the encoding operation on the frame has finished
        virtual void onEndFrame(int frameNumber, PicType picType) = 0;
    };

private:
    VideoWriter_GPU(const VideoWriter_GPU&);
    VideoWriter_GPU& operator=(const VideoWriter_GPU&);

    class Impl;
    std::auto_ptr<Impl> impl_;
};


////////////////////////////////// Video Decoding //////////////////////////////////////////

namespace detail
{
    class FrameQueue;
    class VideoParser;
}

class CV_EXPORTS VideoReader_GPU
{
public:
    enum Codec
    {
        MPEG1 = 0,
        MPEG2,
        MPEG4,
        VC1,
        H264,
        JPEG,
        H264_SVC,
        H264_MVC,

        Uncompressed_YUV420 = (('I'<<24)|('Y'<<16)|('U'<<8)|('V')),   // Y,U,V (4:2:0)
        Uncompressed_YV12   = (('Y'<<24)|('V'<<16)|('1'<<8)|('2')),   // Y,V,U (4:2:0)
        Uncompressed_NV12   = (('N'<<24)|('V'<<16)|('1'<<8)|('2')),   // Y,UV  (4:2:0)
        Uncompressed_YUYV   = (('Y'<<24)|('U'<<16)|('Y'<<8)|('V')),   // YUYV/YUY2 (4:2:2)
        Uncompressed_UYVY   = (('U'<<24)|('Y'<<16)|('V'<<8)|('Y')),   // UYVY (4:2:2)
    };

    enum ChromaFormat
    {
        Monochrome=0,
        YUV420,
        YUV422,
        YUV444,
    };

    struct FormatInfo
    {
        Codec codec;
        ChromaFormat chromaFormat;
        int width;
        int height;
    };

    class VideoSource;

    VideoReader_GPU();
    explicit VideoReader_GPU(const std::string& filename);
    explicit VideoReader_GPU(const cv::Ptr<VideoSource>& source);

    ~VideoReader_GPU();

    void open(const std::string& filename);
    void open(const cv::Ptr<VideoSource>& source);
    bool isOpened() const;

    void close();

    bool read(GpuMat& image);

    FormatInfo format() const;
    void dumpFormat(std::ostream& st);

    class CV_EXPORTS VideoSource
    {
    public:
        VideoSource() : frameQueue_(0), videoParser_(0) {}
        virtual ~VideoSource() {}

        virtual FormatInfo format() const = 0;
        virtual void start() = 0;
        virtual void stop() = 0;
        virtual bool isStarted() const = 0;
        virtual bool hasError() const = 0;

        void setFrameQueue(detail::FrameQueue* frameQueue) { frameQueue_ = frameQueue; }
        void setVideoParser(detail::VideoParser* videoParser) { videoParser_ = videoParser; }

    protected:
        bool parseVideoData(const uchar* data, size_t size, bool endOfStream = false);

    private:
        VideoSource(const VideoSource&);
        VideoSource& operator =(const VideoSource&);

        detail::FrameQueue* frameQueue_;
        detail::VideoParser* videoParser_;
    };

private:
    VideoReader_GPU(const VideoReader_GPU&);
    VideoReader_GPU& operator =(const VideoReader_GPU&);

    class Impl;
    std::auto_ptr<Impl> impl_;
};

//! removes points (CV_32FC2, single row matrix) with zero mask value
CV_EXPORTS void compactPoints(GpuMat &points0, GpuMat &points1, const GpuMat &mask);

CV_EXPORTS void calcWobbleSuppressionMaps(
        int left, int idx, int right, Size size, const Mat &ml, const Mat &mr,
        GpuMat &mapx, GpuMat &mapy);

} // namespace gpu

} // namespace cv

#endif /* __OPENCV_GPU_HPP__ */

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Software Developer
Australia Australia
This member has not yet provided a Biography. Assume it's interesting and varied, and probably something to do with programming.

Comments and Discussions