Click here to Skip to main content
15,894,017 members
Articles / Programming Languages / C#

Resolving Symbolic References in a CodeDOM (Part 7)

Rate me:
Please Sign up or sign in to vote.
4.75/5 (6 votes)
2 Dec 2012CDDL12 min read 19.4K   510   14  
Resolving symbolic references in a CodeDOM.
// The Nova Project by Ken Beckett.
// Copyright (C) 2007-2012 Inevitable Software, all rights reserved.
// Released under the Common Development and Distribution License, CDDL-1.0: http://opensource.org/licenses/cddl1.php

using System;

using Nova.Parsing;

namespace Nova.CodeDOM
{
    /// <summary>
    /// Adds one <see cref="Expression"/> to another.
    /// </summary>
    public class Add : BinaryArithmeticOperator
    {
        #region /* CONSTANTS */

        /// <summary>
        /// The internal name of the operator.
        /// </summary>
        public const string InternalName = NamePrefix + "Addition";

        #endregion

        #region /* CONSTRUCTORS */

        /// <summary>
        /// Create an <see cref="Add"/> operator.
        /// </summary>
        public Add(Expression left, Expression right)
            : base(left, right)
        { }

        #endregion

        #region /* PROPERTIES */

        /// <summary>
        /// The symbol associated with the operator.
        /// </summary>
        public override string Symbol
        {
            get { return ParseToken; }
        }

        #endregion

        #region /* METHODS */

        /// <summary>
        /// The internal name of the <see cref="BinaryOperator"/>.
        /// </summary>
        public override string GetInternalName()
        {
            return InternalName;
        }

        #endregion

        #region /* PARSING */

        /// <summary>
        /// The token used to parse the code object.
        /// </summary>
        public const string ParseToken = "+";

        /// <summary>
        /// The precedence of the operator.
        /// </summary>
        public const int Precedence = 310;

        /// <summary>
        /// True if the operator is left-associative, or false if it's right-associative.
        /// </summary>
        public const bool LeftAssociative = true;

        internal static new void AddParsePoints()
        {
            Parser.AddOperatorParsePoint(ParseToken, Precedence, LeftAssociative, false, Parse);
        }

        /// <summary>
        /// Parse an <see cref="Add"/> operator.
        /// </summary>
        public static Add Parse(Parser parser, CodeObject parent, ParseFlags flags)
        {
            // Verify that we have a left expression before proceeding, otherwise abort
            // (this is to give the Positive operator a chance at parsing it)
            if (parser.HasUnusedExpression)
                return new Add(parser, parent);
            return null;
        }

        protected Add(Parser parser, CodeObject parent)
            : base(parser, parent)
        { }

        /// <summary>
        /// Get the precedence of the operator.
        /// </summary>
        public override int GetPrecedence()
        {
            return Precedence;
        }

        #endregion

        #region /* RESOLVING */

        /// <summary>
        /// Evaluate the type of the <see cref="Expression"/>.
        /// </summary>
        /// <returns>The resulting <see cref="TypeRef"/> or <see cref="UnresolvedRef"/>.</returns>
        public override TypeRefBase EvaluateType(bool withoutConstants)
        {
            // If we have a reference to an overloaded operator declaration, use its return type
            if (_operatorRef is OperatorRef)
                return ((OperatorRef)_operatorRef).GetReturnType();

            // Determine the types of both sides
            TypeRefBase leftTypeRefBase = (_left != null ? _left.EvaluateType(withoutConstants) : null);
            TypeRefBase rightTypeRefBase = (_right != null ? _right.EvaluateType(withoutConstants) : null);
            if (leftTypeRefBase is TypeRef && rightTypeRefBase is TypeRef)
            {
                TypeRef leftTypeRef = (TypeRef)leftTypeRefBase;
                TypeRef rightTypeRef = (TypeRef)rightTypeRefBase;

                // Handle constants
                if (!withoutConstants && leftTypeRef.IsConst && rightTypeRef.IsConst)
                {
                    object result = EvaluateConstants(leftTypeRef.GetConstantValue(), rightTypeRef.GetConstantValue());
                    return (result != null ? new TypeRef(result) : TypeRef.ObjectRef);
                }

                // Evaluate as a string if either side is a string OR the left side is implicitly convertible to a string (string concatenation)
                if (leftTypeRef.IsSameRef(TypeRef.StringRef) || rightTypeRef.IsSameRef(TypeRef.StringRef)
                    || leftTypeRef.UserDefinedImplicitConversionExists(TypeRef.StringRef))
                    return TypeRef.StringRef;

                // Boolean operands aren't supported
                if (leftTypeRef.IsSameRef(TypeRef.BoolRef) || rightTypeRef.IsSameRef(TypeRef.BoolRef))
                    return null;

                // Enumeration addition: If one side is an enum and the other is of the underlying type
                // of the enum (or is implicitly convertible to it), then the result is the enum type.
                // E +(E, U):
                if (leftTypeRef.IsEnum)
                    return (rightTypeRef.IsImplicitlyConvertibleTo(leftTypeRef.GetUnderlyingTypeOfEnum()) ? leftTypeRef : TypeRef.ObjectRef);
                // E +(U, E):
                if (rightTypeRef.IsEnum)
                    return (leftTypeRef.IsImplicitlyConvertibleTo(rightTypeRef.GetUnderlyingTypeOfEnum()) ? rightTypeRef : TypeRef.ObjectRef);
            }
            else if (leftTypeRefBase != null && rightTypeRefBase != null)
            {
                // Evaluate as a string if one side is unresolved and the other is a string (reduce error propagation)
                if (leftTypeRefBase.IsSameRef(TypeRef.StringRef) || rightTypeRefBase.IsSameRef(TypeRef.StringRef))
                    return TypeRef.StringRef;
            }

            // By default, determine a common type (using implicit conversions) that can handle the
            // result of the operation.
            return TypeRef.GetCommonType(leftTypeRefBase, rightTypeRefBase);
        }

        /// <summary>
        /// Add two constant objects.
        /// Supported types are: string, bool, enum, decimal, double, float, ulong, long, uint, int, ushort, short, char, byte, sbyte.
        /// </summary>
        /// <returns>
        /// The sum of the two constants, using the appropriate result type, including promoting smaller
        /// types to int. Returns null if the operation is invalid.
        /// </returns>
        protected override object EvaluateConstants(object leftConstant, object rightConstant)
        {
            // Do string concatenation if either side is a string (even if the other side is null)
            if (leftConstant is string)
                return ((string)leftConstant + rightConstant);
            if (rightConstant is string)
                return (leftConstant + (string)rightConstant);

            // Check for null constants
            if (leftConstant == null || rightConstant == null)
                return null;  // The operation is invalid

            // Boolean operands aren't supported
            if (leftConstant is bool || rightConstant is bool)
                return null;  // The operation is invalid

            // Handle enum constants
            // Enumeration addition: If one side is an enum and the other is of the underlying type
            // of the enum (or is implicitly convertible to it), then the result is the enum type.
            if (leftConstant is EnumConstant)
            {
                if (!(rightConstant is EnumConstant))
                {
                    EnumConstant leftEnumConstant = (EnumConstant)leftConstant;
                    TypeRefBase underlyingTypeRefBase = leftEnumConstant.EnumTypeRef.GetUnderlyingTypeOfEnum();
                    TypeRef rightTypeRef = new TypeRef(rightConstant.GetType());
                    if (rightTypeRef.IsImplicitlyConvertibleTo(underlyingTypeRefBase))
                    {
                        // E +(E, U):
                        object enumValue = EvaluateConstants(leftEnumConstant.ConstantValue, rightConstant);
                        if (enumValue != null)
                            return new EnumConstant(leftEnumConstant.EnumTypeRef, TypeRef.ChangeTypeOfConstant(enumValue, underlyingTypeRefBase));
                    }
                }
                return null;  // The operation is invalid
            }
            if (rightConstant is EnumConstant)
            {
                EnumConstant rightEnumConstant = (EnumConstant)rightConstant;
                TypeRefBase underlyingTypeRefBase = rightEnumConstant.EnumTypeRef.GetUnderlyingTypeOfEnum();
                TypeRef leftTypeRef = new TypeRef(leftConstant.GetType());
                if (leftTypeRef.IsImplicitlyConvertibleTo(underlyingTypeRefBase))
                {
                    // E +(U, E):
                    object enumValue = EvaluateConstants(leftConstant, rightEnumConstant.ConstantValue);
                    if (enumValue != null)
                        return new EnumConstant(rightEnumConstant.EnumTypeRef, TypeRef.ChangeTypeOfConstant(enumValue, underlyingTypeRefBase));
                }
                return null;  // The operation is invalid
            }

            // Do binary numeric promotions
            if (leftConstant is decimal)
            {
                if (rightConstant is float || rightConstant is double)
                    return null;  // The operation is invalid
                return (decimal)leftConstant + Convert.ToDecimal(rightConstant);
            }
            if (rightConstant is decimal)
            {
                if (leftConstant is float || leftConstant is double)
                    return null;  // The operation is invalid
                return Convert.ToDecimal(leftConstant) + (decimal)rightConstant;
            }
            if (leftConstant is double)
                return (double)leftConstant + Convert.ToDouble(rightConstant);
            if (rightConstant is double)
                return Convert.ToDouble(leftConstant) + (double)rightConstant;
            if (leftConstant is float)
                return (float)leftConstant + Convert.ToSingle(rightConstant);
            if (rightConstant is float)
                return Convert.ToSingle(leftConstant) + (float)rightConstant;
            if (leftConstant is ulong)
            {
                if ((rightConstant is sbyte && (sbyte)rightConstant < 0) || (rightConstant is short && (short)rightConstant < 0)
                    || (rightConstant is int && (int)rightConstant < 0) || (rightConstant is long && (long)rightConstant < 0))
                    return null;  // The operation is invalid
                return (ulong)leftConstant + Convert.ToUInt64(rightConstant);
            }
            if (rightConstant is ulong)
            {
                if ((leftConstant is sbyte && (sbyte)leftConstant < 0) || (leftConstant is short && (short)leftConstant < 0)
                    || (leftConstant is int && (int)leftConstant < 0) || (leftConstant is long && (long)leftConstant < 0))
                    return null;  // The operation is invalid
                return Convert.ToUInt64(leftConstant) + (ulong)rightConstant;
            }
            if (leftConstant is long)
                return (long)leftConstant + Convert.ToInt64(rightConstant);
            if (rightConstant is long)
                return Convert.ToInt64(leftConstant) + (long)rightConstant;
            if (leftConstant is uint)
            {
                if ((rightConstant is sbyte && (sbyte)rightConstant < 0) || (rightConstant is short && (short)rightConstant < 0)
                    || (rightConstant is int && (int)rightConstant < 0))
                    return Convert.ToInt64(leftConstant) + Convert.ToInt64(rightConstant);
                return (uint)leftConstant + Convert.ToUInt32(rightConstant);
            }
            if (rightConstant is uint)
            {
                if ((leftConstant is sbyte && (sbyte)leftConstant < 0) || (leftConstant is short && (short)leftConstant < 0)
                    || (leftConstant is int && (int)leftConstant < 0))
                    return Convert.ToInt64(leftConstant) + Convert.ToInt64(rightConstant);
                return Convert.ToUInt32(leftConstant) + (uint)rightConstant;
            }
            // All other cases (with smaller integral types) get promoted to ints
            return Convert.ToInt32(leftConstant) + Convert.ToInt32(rightConstant);
        }

        #endregion
    }
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Common Development and Distribution License (CDDL)


Written By
Software Developer (Senior)
United States United States
I've been writing software since the late 70's, currently focusing mainly on C#.NET. I also like to travel around the world, and I own a Chocolate Factory (sadly, none of my employees are oompa loompas).

Comments and Discussions