Evaluating Expression with Descend Parser and U++ CParser






4.76/5 (13 votes)
Simple descend parser capable of evaluating mathematical expressions used to draw a graph of a function
Introduction
Descend parsing is a well known simple approach to evaluating complex syntaxes. In this article, we shall create a simple descend parser capable of evaluating mathematical expressions, using U++ CParser
class for lexical analysis. And to have some fun, we shall add an interactive level to render a graph of function.
Descend Parsing Basics
Descend parsing usually works by providing a function for each level of syntax. If evaluating expressions, our main concern usually is to maintain the priority of operators. In descent parser, each priority level is represented by a single function. Usually, expressions can be represented as addition/subtraction of terms (descend level), terms are formed by multiplying or dividing exponentials (descend level), exponentials combine factors (descend level). Factors usually represent the final descend level. Expression in parenthesis is considered a factor and resolved using recursion.
Usually, syntax definitions provide some formal syntax graphs or definitions, however in this simple example, we shall avoid this - as you will see, the properly coded descent parser is very self-explanatory to the point of serving as syntax definition.
Lexical Parsing with CParser
Most syntax parsing systems employ 'two-level' parsing architecture, with lower level lexical parser used to resolve items like numbers or identifiers. U++ framework provides a handy lexical parser class CParser
for parsing syntax that has similar lexical rules of identifiers and numbers to C language. CParser
operates on a stream of zero-terminated characters (const char *
). Fundamental methods are tests on existence of various lexical elements, usually also in "advance if true" variant. For example, Char
method returns true
if input position is on specified character and if true
, advances position to the next element. Whitespaces are automatically skipped in default mode. Some of methods throw CParser::Exc
exception in case of failure.
Expression Descend Parser
With the theory explained, let us start writing the code. We shall use a helper processing class...
struct ExpressionEvaluator {
CParser p; // this will hold our lexical context
double x; // 'variable'
double Factor();
double Exponent();
double Term();
double Expression();
};
...so that we do not have to pass CParser
and our function variable x
into each method as parameters. We shall start with Expression descend level:
double ExpressionEvaluator::Expression()
{ // resolve + -
double y = Term(); // at least one term
for(;;)
if(p.Char('+'))
y = y + Term(); // add another term
else
if(p.Char('-'))
y = y - Term(); // subtract another term
else
return y; // no more + - operators
}
What we say here is quite simple: Expression is a list of at least one term, separated by operators +
or -
. Of course, as our aim is to evaluate the value of expression, we perform required calculations (adding or subtracting) as needed.
The next two levels (Term
, Exponent
) are quite similar:
double ExpressionEvaluator::Term()
{ // resolve * /
double y = Exponent(); // at least one member
for(;;)
if(p.Char('*'))
y = y * Exponent(); // multiply by another member
else
if(p.Char('/'))
y = y / Exponent(); // divide by another member
else
return y; // no more * / operators
}
double ExpressionEvaluator::Exponent()
{ // resolve power ^
double y = Factor(); // at least one factor
for(;;)
if(p.Char('^'))
y = pow(y, Factor()); // power by another factor
else
return y; // no more power ^ operators
}
Final level, Factor
, has to resolve numeric constants, unary -
, variable x
and functions. We can use Id
method of CParser
to detect various function names and other meaningful identifiers:
double ExpressionEvaluator::Factor()
{
if(p.Char('-')) // unary -
return -Factor();
if(p.Id("x")) // our variable
return x;
if(p.Id("e")) // e constant
return M_E;
if(p.Id("pi")) // pi constant
return M_PI;
if(p.Id("abs")) // some functions...
return fabs(Factor());
if(p.Id("sqrt"))
return sqrt(Factor());
//... add more functions as needed
if(p.Char('(')) { // resolve parenthesis - recurse back to Expression (+ - operators)
double y = Expression();
p.PassChar(')'); // make sure there is closing parenthesis
return y;
}
return p.ReadDouble(); // last possibility is that we are at number...
}
The interesting part here is the recursion used to resolve parenthesis (and also arguments to functions and unary -
). PassChar
method throws an exception if required character is missing. ReadDouble
throws an exception if input cannot be interpreted as floating point number.
However, the list of functions here is tedious and scanning through long lists of identifiers could be slow so the better solution is to use map. We can use C++11 lambdas to simplify coding:
double ExpressionEvaluator::Factor()
{
if(p.Char('-')) // unary -
return -Factor();
if(p.IsId()) { // we are at some identifier
static ArrayMap<String, std::function<double (ExpressionEvaluator *ee)> > map;
ONCELOCK { // This block will only be executed once
map // initialize the map
("x", [](ExpressionEvaluator *ee) { return ee->x; })
("e", [](ExpressionEvaluator *) { return M_E; })
("pi", [](ExpressionEvaluator *) { return M_PI; })
("ln", [](ExpressionEvaluator *ee) { return log(ee->Factor()); })
#define FN_(id) (#id, [](ExpressionEvaluator *ee) { return id(ee->Factor()); })
FN_(abs) // some functions...
FN_(sqrt)
FN_(log)
FN_(log2)
FN_(sin)
FN_(cos)
FN_(tan)
FN_(asin)
FN_(acos)
FN_(atan)
#undef FN_
;
}
int q = map.Find(p.ReadId());
if(q < 0)
p.ThrowError("Unrecognized identifier");
return map[q](this);
}
if(p.Char('(')) { // resolve parenthesis - recurse back to Sum (+ - operators)
double y = Expression();
p.PassChar(')'); // make sure there is closing parenthesis
return y;
}
return p.ReadDouble(); // last possibility is that we are at number...
}
Instead of checking individual identifiers, we just check that identifier is present with IsId
and then load it with ReadId
. For map, we are using U++ ArrayMap
. ArrayMap::operator()
is a convenient alternative for adding key-value pairs in chain (return *this
). ONCELOCK
macro only allows initialization code to be performed once (if multiple threads encounter the same ONCELOCK
at the same time, one thread runs the initialization code while the other waits until it is completed). We need to pass ExpressionEvaluator
pointer as parameter to lambdas as we want to have single identifier map for all instances of ExpressionEvaluator
. Trick with temporary FN_
macro is used to reduce verbosity when the C function name matches our required function id.
Working directly with ExpressionEvaluator
would not be comfortable, so we add a convenience function:
double Evaluate(const char *s, double x)
{ // evaluate expression for given variable,
// return Null on any failure or out-of-bounds result (NaN)
ExpressionEvaluator v;
v.x = x;
v.p.Set(s);
try {
double y = v.Expression();
return y >= -1e200 && y < 1e200 ? y : Null;
}
catch(CParser::Error) {}
return Null;
}
Null
is a U++ concept that represents null value. It is in fact defined as a very high negative number that is by definition excluded from valid double value range (same concept is used for int
). We use it here to signal that either the syntax is wrong or result is not a valid number.
Drawing the Graph of a Function
Now we can evaluate text expression for x
, let us add some GUI. Window will be trivial, just single input text field and area to draw the graph. We shall setup the widget position manually:
struct FnGraph : public TopWindow {
virtual void Paint(Draw& w);
EditString expression; // function to display
FnGraph();
};
FnGraph::FnGraph()
{
Title("Graph of a function");
Add(expression.TopPos(0).HSizePos()); // place widget to the top,
// horizontally fill the window
expression << [&] { Refresh(); }; // when expression changes, repaint the graph
Sizeable().Zoomable(); // make the window resizable
}
The only moderately complex thing to do is to paint the graph:
void FnGraph::Paint(Draw& w_)
{
Size sz = GetSize();
DrawPainter w(w_, sz); // Use Painter for smooth sw rendering
w.Clear(White()); // clear the background
int ecy = expression.GetSize().cy; // query the height of widget
w.Offset(0, ecy); // move coordinates out of widget
sz.cy -= ecy; // and reduce the size
if(sz.cy < 1) // if too small, do nothing (avoid div by zero)
return;
sz = sz / 2 * 2 - 1; // this trick will force axes to .5,
// results in sharper AA rendering
double pixels_per_unit = sz.cy / 9; // we want to display y range -4.5 .. 4.5
double xaxis = sz.cy / 2.0; // vertical position of x axis
double yaxis = sz.cx / 2.0; // horizontal position of y axis
w.Move(0, xaxis).Line(sz.cx, xaxis).Stroke(1, Blue()); // draw x axis
w.Move(yaxis, 0).Line(yaxis, sz.cy).Stroke(1, Blue()); // draw y axis
Font font = Serif(15);
if(pixels_per_unit > 20) // if big enough,
// paint some axis markers and numbers...
for(int i = 1; i < 2 * sz.cx / pixels_per_unit; i++)
for(int sgn = -1; sgn < 2; sgn += 2) {
String n = AsString(sgn * i);
Size tsz = GetTextSize(n, font);
double x = yaxis + sgn * i * pixels_per_unit;
w.Move(x, xaxis - 5).Line(x, xaxis + 5).Stroke(1, Blue());
w.Text(int(x - tsz.cx / 2.0), int(xaxis + 6), n, font).Fill(Blue());
double y = xaxis - sgn * i * pixels_per_unit;
w.Move(yaxis - 5, y).Line(yaxis + 5, y).Stroke(1, Blue());
w.Text(int(yaxis + 6), int(y - tsz.cy / 2.0), n, font).Fill(Blue());
}
double y0 = Null; // store previous value
for(int i = 0; i < sz.cx; i++) { // now iterate through all x points and draw the graph
double x = (i - sz.cx / 2.0) / pixels_per_unit;
double y = Evaluate(~~expression, x);
if(!IsNull(y)) {
double gy = sz.cy / 2.0 - y * pixels_per_unit;
if(IsNull(y0)) // previous value was defined
w.Move(i, gy);
else
w.Line(i, gy);
}
y0 = y;
}
w.Stroke(1, Black()); // finally paint the graph line
}
We are using Painter
package to provide smooth anti-aliased rendering. About the most complex part of painting, the graph is to draw axes, the rest is simple. As this is more or less an illustration example, we do not bother about GUI for scaling and moving the origin, just draw +/- 4.5 in y axis and place the origin into the center.
Conclusion
The example demonstrates how simple and clean descend parsing can be made if using well thought lexical layer. Similar approach can be applied to most syntaxes encountered in general computing.
Useful Links
Article History
- 2016-02-01: New version of
Factor
method using C++11 lambdas and map