Click here to Skip to main content
15,893,564 members
Articles / Programming Languages / C++

RMI for C++

Rate me:
Please Sign up or sign in to vote.
4.87/5 (113 votes)
6 Aug 2009CPOL8 min read 833.6K   4.6K   153  
User-friendly remote method invocation in C++.
//*****************************************************************************
// RCF - Remote Call Framework
// Copyright (c) 2005, Jarl Lindrud.
// Contact: jlindrud@hotmail.com .
//
// Distributed under the so-called MIT license, see accompanying file license.txt.
//*****************************************************************************

#ifndef _SF_ENCODING_HPP_
#define _SF_ENCODING_HPP_

#include <RCF/ByteOrdering.hpp>

#include <SF/DataPtr.hpp>
#include <SF/Exception.hpp>
#include <SF/Tools.hpp>

namespace SF {

    class Text;
    class BinaryNative;
    class BinaryPortable;

    static char chSeparator = ':';

    //************************************************************************

    template<typename EncodingT, typename T>
    class CountTypedElements;

    template<typename Encoding, typename T>
    class EncodeTypedElements;

    template<typename Encoding, typename T>
    class DecodeTypedElements;

    //************************************************************************

    template<typename T>
    class CountTypedElements<BinaryNative, T>
    {
    public:
        UInt32 operator()(DataPtr &data)
        {
            SF_ASSERT(data.length() % sizeof(T) == 0);
            return data.length() / sizeof(T);
        }
    };

    template<typename T>
    class CountTypedElements<BinaryPortable, T>
    {
    public:
        UInt32 operator()(DataPtr &data)
        {
            SF_ASSERT(data.length() % sizeof(typename PortableT<T>::Val) == 0);
            return data.length() / sizeof(typename PortableT<T>::Val);
        }
    };

    template<typename T>
    class CountTypedElements<Text, T>
    {
    public:
        UInt32 operator()(DataPtr &data)
        {
            // Count number of internally occuring separators in the data, and then add 1
            UInt32 count = 0;
            for (UInt32 i=1; i<data.length()-1; i++)
            {
                if (data.get()[i] == Byte8(chSeparator))
                {
                    count++;
                }
            }
            return count+1;
        }
    };

    template<>
    class CountTypedElements<Text, char>
    {
    public:
        UInt32 operator()(DataPtr &data)
        {
            return data.length();
        }
    };

    template<>
    class CountTypedElements<Text, unsigned char>
    {
    public:
        UInt32 operator()(DataPtr &data)
        {
            return data.length();
        }
    };

    //*******************************************************************************

    // TODO: precision issues when encoding/decoding floating point values?

    template<typename T>
    class EncodeTypedElements<Text, T>
    {
    public:
        void operator()(DataPtr &data, T *t, int nCount)
        {
            std::ostringstream ostr;
            ostr << t[0];
            for (int i=1; i<nCount; i++) 
            {
                ostr.put(chSeparator);
                ostr << t[i];
            }
            std::string s = ostr.str();
            data.assign(reinterpret_cast<const Byte8 *>(s.c_str()), static_cast<UInt32>(s.length()));
        }
    };

    template<typename T>
    class DecodeTypedElements<Text, T>
    {
    public:
        void operator()(DataPtr &data, T *t, int nCount)
        {
            if (data.length() == 0)
                SF_THROW(Exception, "Empty data block from input stream" );
            std::string strData(reinterpret_cast<char *>(data.get()), data.length());
            std::istringstream istr(strData);
            istr >> t[0];
            for (int i=1; i<nCount; i++) 
            {
                char ch;
                istr.get(ch);
                SF_ASSERT( ch == chSeparator );
                istr >> t[i];
            }
        }
    };

    template<>
    class EncodeTypedElements<Text, char>
    {
    public:
        void operator()(DataPtr &data, char *t, int nCount)
        {
            data.assign(reinterpret_cast<Byte8 *>(t), nCount);
        }
    };

    template<>
    class DecodeTypedElements<Text, char>
    {
    public:
        void operator()(DataPtr &data, char *t, int nCount)
        {
            memcpy(t, data.get(), nCount);
        }
    };

    template<>
    class EncodeTypedElements<Text, unsigned char>
    {
    public:
        void operator()(DataPtr &data, unsigned char *t, int nCount)
        {
            data.assign(reinterpret_cast<Byte8 *>(t), nCount);
        }
    };

    template<>
    class DecodeTypedElements<Text, unsigned char>
    {
    public:
        void operator()(DataPtr &data, unsigned char *t, int nCount)
        {
            memcpy(t, data.get(), nCount);
        }
    };

    // Binary encoding

    template<typename T>
    class EncodeTypedElements<BinaryNative, T>
    {
    public:
        void operator()(DataPtr &data, T *t, int nCount)
        {
            data.assign(reinterpret_cast<Byte8 *>(t), sizeof(T)*nCount );
        }
    };

    template<typename T>
    class DecodeTypedElements<BinaryNative, T>
    {
    public:
        void operator()(DataPtr &data, T *t, int nCount)
        {
            SF_ASSERT( data.length() == sizeof(T)*nCount);
            memcpy(t, data.get(), sizeof(T)*nCount);
        }
    };

    template<typename T>
    class EncodeTypedElements<BinaryPortable, T>
    {
    public:
        void operator()(DataPtr &data, T *t, int nCount)
        {
            typedef typename PortableT<T>::Val PortableT;
            UInt32 nBufferSize = sizeof(PortableT) * nCount;
            UInt32 nAlloc = data.allocate(nBufferSize);
            SF_ASSERT(nAlloc == nBufferSize);
            PortableT *buffer = reinterpret_cast<PortableT *>(data.get());
            // TODO: if T == PortableT, use a memcpy for the whole array
            for (int i=0; i<nCount; i++)
                buffer[i] = t[i];
            RCF::machineToNetworkOrder(buffer, sizeof(PortableT), nCount);
        }
    };

    template<typename T>
    class DecodeTypedElements<BinaryPortable, T>
    {
    public:
        void operator()(DataPtr &data, T *t, int nCount)
        {
            typedef typename PortableT<T>::Val PortableT;
            if (data.length() != sizeof(PortableT)*nCount)
                SF_THROW( Exception, "Stream format error while reading" )(data.length())(nCount)(typeid(PortableT).name());
            PortableT *buffer = reinterpret_cast<PortableT *>(data.get());
            RCF::networkToMachineOrder(buffer, sizeof(PortableT), nCount);
            // TODO: if T == PortableT, use a memcpy for the whole array
            for (int i=0; i<nCount; i++)
                t[i] = buffer[i];
        }
    };


    //*****************************************************************

    template<typename Encoding>
    class CountElements
    {
    public:
        UInt32 operator()(DataPtr &data, const std::type_info &objType)
        {

#define TRY_COUNT_ELEMENTS(type)                                    \
            if (objType == typeid(type))                            \
            {                                                       \
                return CountTypedElements<Encoding, type>()(data);  \
            }

            FOR_EACH_FUNDAMENTAL_TYPE( TRY_COUNT_ELEMENTS );

#undef TRY_COUNT_ELEMENTS                    

            SF_ASSERT(0)(objType);
            return 0;
        }
    };

    template<typename Encoding>
    class EncodeElements
    {
    public:
        void operator()(
            DataPtr &data, 
            void *pvObject, 
            const std::type_info &objType, 
            int nCount)
        {
            
#define TRY_ENCODE_ELEMENTS(type)                           \
            if (objType == typeid(type))                    \
            {                                               \
                EncodeTypedElements<Encoding, type>()(      \
                    data,                                   \
                    static_cast<type *>(pvObject),          \
                    nCount);                                \
                return;                                     \
            }

            FOR_EACH_FUNDAMENTAL_TYPE( TRY_ENCODE_ELEMENTS );

#undef TRY_ENCODE_ELEMENTS

            SF_ASSERT(0)(objType);

        }
    };

    template<typename Encoding>
    class DecodeElements
    {
    public:
        void operator()(
            DataPtr &data, 
            void *pvObject, 
            const std::type_info &objType, 
            int nCount)
        {

#define TRY_DECODE_ELEMENTS(type)                           \
            if (objType == typeid(type))                    \
            {                                               \
                DecodeTypedElements<Encoding, type>()(      \
                    data,                                   \
                    static_cast<type *>(pvObject),          \
                    nCount);                                \
                return;                                     \
            }

            FOR_EACH_FUNDAMENTAL_TYPE( TRY_DECODE_ELEMENTS );

#undef TRY_DECODE_ELEMENTS

            SF_ASSERT(0)(objType);
        }
    };

} // namespace SF


#endif // !_SF_ENCODING_HPP_

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Australia Australia
Software developer, from Sweden and now living in Canberra, Australia, working on distributed C++ applications. When he is not programming, Jarl enjoys skiing and playing table tennis. He derives immense satisfaction from referring to himself in third person.

Comments and Discussions