65.9K
CodeProject is changing. Read more.
Home

GPGPU image processing basics using OpenCL.NET

starIconstarIconstarIconstarIcon
emptyStarIcon
starIcon

4.78/5 (6 votes)

Dec 3, 2012

CPOL

2 min read

viewsIcon

60719

downloadIcon

58

Image processing basics on the GPU using OpenCL.NET.

Introduction

In this article we will learn how to run a simple image processing on the GPU using OpenCL.NET. GPUs have been specifically designed to perform a high amount of highly-parallelizable work, especially image processing. We can have a 100 times performance increase when doing image processing on the GPU, in comparison with a CPU. We will discuss the fastest way to load an image from the disk, process it on the GPU and save it to a file. Also we will cover the necessary details on preparing .NET data to work with OpenCL.

OpenCL is a cross-platform framework used mostly for GPGPU (General-purpose computing on graphics processing units). There are plenty of tutorials available on image processing with OpenCL using C/C++, however there's not much information that would cover OpenCL image processing with .NET.
I won't go into details about OpenCL kernels/queues/etc. (there's plenty of information available on the internet), however I'll provide you with a bare minimum code required to load an image from disk, process it with OpenCL on the GPU and save it back to a file.

Before we get started, make sure that you download the source code of OpenCL.NET from http://openclnet.codeplex.com/ and add it to your project. 

Using the code 

We'll use a simple OpenCL kernel that converts an input image into a grayscale image. The kernel should be saved to a separate file. Kernel source code:

__kernel void imagingTest(__read_only  image2d_t srcImg,
                       __write_only image2d_t dstImg)
{
  const sampler_t smp = CLK_NORMALIZED_COORDS_FALSE | //Natural coordinates
    CLK_ADDRESS_CLAMP_TO_EDGE | //Clamp to zeros
    CLK_FILTER_LINEAR;
  int2 coord = (int2)(get_global_id(0), get_global_id(1));
  uint4 bgra = read_imageui(srcImg, smp, coord); //The byte order is BGRA
  float4 bgrafloat = convert_float4(bgra) / 255.0f; //Convert to normalized [0..1] float
  //Convert RGB to luminance (make the image grayscale).
  float luminance =  sqrt(0.241f * bgrafloat.z * bgrafloat.z + 0.691f * 
                      bgrafloat.y * bgrafloat.y + 0.068f * bgrafloat.x * bgrafloat.x);
  bgra.x = bgra.y = bgra.z = (uint) (luminance * 255.0f);
  bgra.w = 255;
  write_imageui(dstImg, coord, bgra);
}

Namespaces used

using System;
using System.Collections;
using System.Collections.Generic;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;
using System.Runtime.InteropServices;
using OpenCL.Net;

Error handling

Since OpenCL.NET is a wrapper for C API, we'll have to do all the error checking on our own. I'm using the following two methods:

private void CheckErr(Cl.ErrorCode err, string name)
{
    if (err != Cl.ErrorCode.Success) {
        Console.WriteLine("ERROR: " + name + " (" + err.ToString() + ")");
    }
}
private void ContextNotify(string errInfo, byte[] data, IntPtr cb, IntPtr userData) {
    Console.WriteLine("OpenCL Notification: " + errInfo);
}

Setting up

The following two variables should be declared in the class itself and will be shared across all of the methods:

private Cl.Context _context;
private Cl.Device _device;

And this is the method that sets up OpenCL:

private void Setup ()
{
    Cl.ErrorCode error;
    Cl.Platform[] platforms = Cl.GetPlatformIDs (out error);
    List<Cl.Device> devicesList = new List<Cl.Device> ();
  
    CheckErr (error, "Cl.GetPlatformIDs");
  
    foreach (Cl.Platform platform in platforms) {
        string platformName = Cl.GetPlatformInfo (platform, Cl.PlatformInfo.Name, out error).ToString ();
        Console.WriteLine ("Platform: " + platformName);
        CheckErr (error, "Cl.GetPlatformInfo");
        //We will be looking only for GPU devices
        foreach (Cl.Device device in Cl.GetDeviceIDs(platform, Cl.DeviceType.Gpu, out error)) {
            CheckErr (error, "Cl.GetDeviceIDs");
            Console.WriteLine ("Device: " + device.ToString ());
            devicesList.Add (device);
        }
    }
  
    if (devicesList.Count <= 0) {
        Console.WriteLine ("No devices found.");
        return;
    }
  
    _device = devicesList[0];
  
    if (Cl.GetDeviceInfo(_device, Cl.DeviceInfo.ImageSupport, 
              out error).CastTo<Cl.Bool>() == Cl.Bool.False)
    {
        Console.WriteLine("No image support.");
        return;
    }
    _context
 = Cl.CreateContext(null, 1, new[] { _device }, ContextNotify, 
IntPtr.Zero, out error);    //Second parameter is amount of devices
    CheckErr(error, "Cl.CreateContext");
}

The image processing part

The main problem is that OpenCL.NET is a wrapper around C API of OpenCL, so it can only work with unmanaged memory. However, all of the data in .NET is managed, so we'll have to marshal the data between managed/unmanaged memory. Usually it would be much easier to handle the RGBA color components in float [0..1] space. However, the input image should be in a byte[] array, because it would really affect the performance to do the byte=>float conversion on the CPU (we would have to divide each component by 255 for every pixel of the image twice - once before the image processing and once after).

public void ImagingTest (string inputImagePath, string outputImagePath)
{
    Cl.ErrorCode error;
    //Load and compile kernel source code.
    string programPath = Environment.CurrentDirectory + "/../../ImagingTest.cl";
    //The path to the source file may vary
  
    if (!System.IO.File.Exists (programPath)) {
        Console.WriteLine ("Program doesn't exist at path " + programPath);
        return;
    }
  
    string programSource = System.IO.File.ReadAllText (programPath);
  
    using (Cl.Program program = Cl.CreateProgramWithSource(_context, 1, new[] { programSource }, null, out error)) {
        CheckErr(error, "Cl.CreateProgramWithSource");
        //Compile kernel source
        error = Cl.BuildProgram (program, 1, new[] { _device }, string.Empty, null, IntPtr.Zero);
        CheckErr(error, "Cl.BuildProgram");
        //Check for any compilation errors
        if (Cl.GetProgramBuildInfo (program, _device, Cl.ProgramBuildInfo.Status, out error).CastTo<Cl.BuildStatus>()
            != Cl.BuildStatus.Success) {
            CheckErr(error, "Cl.GetProgramBuildInfo");
            Console.WriteLine("Cl.GetProgramBuildInfo != Success");
            Console.WriteLine(Cl.GetProgramBuildInfo(program, _device, Cl.ProgramBuildInfo.Log, out error));
            return;
        }
        //Create the required kernel (entry function)
        Cl.Kernel kernel = Cl.CreateKernel(program, "imagingTest", out error);
        CheckErr(error, "Cl.CreateKernel");
      
        int intPtrSize = 0;
        intPtrSize = Marshal.SizeOf(typeof(IntPtr));
        //Image's RGBA data converted to an unmanaged[] array
        byte[] inputByteArray;
        //OpenCL memory buffer that will keep our image's byte[] data.
        Cl.Mem inputImage2DBuffer;
        Cl.ImageFormat clImageFormat = new Cl.ImageFormat(Cl.ChannelOrder.RGBA, Cl.ChannelType.Unsigned_Int8);
        int inputImgWidth, inputImgHeight;
      
        int inputImgBytesSize;
        int inputImgStride;
        //Try loading the input image
        using (FileStream imageFileStream = new FileStream(inputImagePath, FileMode.Open) ) {
            System.Drawing.Image inputImage = System.Drawing.Image.FromStream( imageFileStream );
          
            if (inputImage == null) {
                Console.WriteLine("Unable to load input image");
                return;
            }
          
            inputImgWidth = inputImage.Width;
            inputImgHeight = inputImage.Height;
          
            System.Drawing.Bitmap bmpImage = new System.Drawing.Bitmap(inputImage);
            //Get raw pixel data of the bitmap
            //The format should match the format of clImageFormat
            BitmapData bitmapData = bmpImage.LockBits( new Rectangle(0, 0, bmpImage.Width, bmpImage.Height),
                          ImageLockMode.ReadOnly, PixelFormat.Format32bppArgb);//inputImage.PixelFormat);
            inputImgStride = bitmapData.Stride;
            inputImgBytesSize = bitmapData.Stride * bitmapData.Height;
          
            //Copy the raw bitmap data to an unmanaged byte[] array
            inputByteArray = new byte[inputImgBytesSize];
            Marshal.Copy(bitmapData.Scan0, inputByteArray, 0, inputImgBytesSize);
            //Allocate OpenCL image memory buffer
            inputImage2DBuffer = Cl.CreateImage2D(_context, Cl.MemFlags.CopyHostPtr | Cl.MemFlags.ReadOnly, clImageFormat,
                                                (IntPtr)bitmapData.Width, (IntPtr)bitmapData.Height,
                                                (IntPtr)0, inputByteArray, out error);
            CheckErr(error, "Cl.CreateImage2D input");
        }
        //Unmanaged output image's raw RGBA byte[] array
        byte[] outputByteArray = new byte[inputImgBytesSize];
        //Allocate OpenCL image memory buffer
        Cl.Mem outputImage2DBuffer = Cl.CreateImage2D(_context, Cl.MemFlags.CopyHostPtr | 
            Cl.MemFlags.WriteOnly, clImageFormat, (IntPtr)inputImgWidth,
            (IntPtr)inputImgHeight, (IntPtr)0, outputByteArray, out error);
        CheckErr(error, "Cl.CreateImage2D output");
        //Pass the memory buffers to our kernel function
        error = Cl.SetKernelArg(kernel, 0, (IntPtr)intPtrSize, inputImage2DBuffer);
        error |= Cl.SetKernelArg(kernel, 1, (IntPtr)intPtrSize, outputImage2DBuffer);
        CheckErr(error, "Cl.SetKernelArg");
      
        //Create a command queue, where all of the commands for execution will be added
        Cl.CommandQueue cmdQueue = Cl.CreateCommandQueue(_context, _device, (Cl.CommandQueueProperties)0, out error);
        CheckErr(error, "Cl.CreateCommandQueue");
        Cl.Event clevent;
        //Copy input image from the host to the GPU.
        IntPtr[] originPtr = new IntPtr[] { (IntPtr)0, (IntPtr)0, (IntPtr)0 };    //x, y, z
        IntPtr[] regionPtr = new IntPtr[] { (IntPtr)inputImgWidth, (IntPtr)inputImgHeight, (IntPtr)1 };    //x, y, z
        IntPtr[] workGroupSizePtr = new IntPtr[] { (IntPtr)inputImgWidth, (IntPtr)inputImgHeight, (IntPtr)1 };
        error = Cl.EnqueueWriteImage(cmdQueue, inputImage2DBuffer, Cl.Bool.True, 
           originPtr, regionPtr, (IntPtr)0, (IntPtr)0, inputByteArray, 0, null, out clevent);
        CheckErr(error, "Cl.EnqueueWriteImage");
        //Execute our kernel (OpenCL code)
        error = Cl.EnqueueNDRangeKernel(cmdQueue, kernel, 2, null, workGroupSizePtr, null, 0, null, out clevent);
        CheckErr(error, "Cl.EnqueueNDRangeKernel");
        //Wait for completion of all calculations on the GPU.
        error = Cl.Finish(cmdQueue);
        CheckErr(error, "Cl.Finish");
        //Read the processed image from GPU to raw RGBA data byte[] array
        error = Cl.EnqueueReadImage(cmdQueue, outputImage2DBuffer, Cl.Bool.True, originPtr, regionPtr,
                                    (IntPtr)0, (IntPtr)0, outputByteArray, 0, null, out clevent);
        CheckErr(error, "Cl.clEnqueueReadImage");
        //Clean up memory
        Cl.ReleaseKernel(kernel);
        Cl.ReleaseCommandQueue(cmdQueue);
      
        Cl.ReleaseMemObject(inputImage2DBuffer);
        Cl.ReleaseMemObject(outputImage2DBuffer);
        //Get a pointer to our unmanaged output byte[] array
        GCHandle pinnedOutputArray = GCHandle.Alloc(outputByteArray, GCHandleType.Pinned);
        IntPtr outputBmpPointer = pinnedOutputArray.AddrOfPinnedObject();
        //Create a new bitmap with processed data and save it to a file.
        Bitmap outputBitmap = new Bitmap(inputImgWidth, inputImgHeight, 
              inputImgStride, PixelFormat.Format32bppArgb, outputBmpPointer);
      
        outputBitmap.Save(outputImagePath, System.Drawing.Imaging.ImageFormat.Png);
        pinnedOutputArray.Free();
    }
}

Now you should have a good foundation for more complex image processing effects on the GPU.