The ASP.NET Identity framework was released to manufacture on March 20 2014, bringing with it a slew of long-awaited enhancements, delivering a fully-formed authentication and authorization platform to the ASP.NET developer community.
In previous posts, we have taken a broad look at the structure of the new framework, and how it differs from the 1.0 release. We've also walked through implementing email account confirmation and two-factor authentication, as well as extending the basic User and Role models (which requires a bit more effort than you might think).
Image by Josh Cowper | Some Rights Reserved
In this post we're going take a deeper look at extending the core set of models afforded by the Identity 2.0 framework, and re-implementing the basic Identity Samples project using integer keys for all of our models, instead of the default string keys which are the default.
In the course of this article, we will basically re-implement the Identity Samples project with integer keys. you can clone the completed source code from my Github repo. Also, if you find bugs and/or have suggestions, please do open an issue and/or shoot me a pull request!
UPDATE: I've also created a ready-to-use Easily Extensible Identity 2.0 project template which can be used to create an Identity 2.0 project in which all of the basic Identity models are easily extended without making a bunch of adjustments to generic type arguments every time.
A popular, and somewhat confounding question is "why did the Identity team choose string keys as the default for the Identity framework models? Many of us who grew up using databases tend towards easy, auto-incrementing integers as database primary keys, because it's easy, and at least in theory, there are some performance advantages with respect to table indexes and such.
The decision of the Identity Team to use strings as keys is best summarized in a Stack Overflow answer by Rick Anderson, writer for ASP.NET at Microsoft:
- The Identity runtime prefers strings for the user ID because we don’t want to be in the business of figuring out proper serialization of the user IDs (we use strings for claims as well for the same reason), e.g. all (or most) of the Identity interfaces refer to user ID as a string.
- People that customize the persistence layer, e.g. the entity types, can choose whatever type they want for keys, but then they own providing us with a string representation of the keys.
- By default we use the string representation of GUIDs for each new user, but that is just because it provides a very easy way for us to automatically generate unique IDs.
The decision is not without its detractors in the community. The default string key described above is essentially a string representation of a Guid. As this discussion on Reddit illustrates, there is contention about the performance aspects of this against a relational database backend.
The concerns noted in the Reddit discussion focus mainly on database index performance, and are unlikely to be an issue for a large number of smaller sites and web applications, and particularly for learning projects and students. However, as noted previously, for many of us, the auto-incrementing integer is the database primary key of choice (even in cases where it is not the BEST choice), and we want our web application to follow suit.
As we discussed in the post on customizing ASP.NET Identity 2.0 Users and Roles, the framework is built up from a structure of generic Interfaces and base classes. At the lowest level, we find interfaces, such as IUser<TKey>
and IRole<TKey>
. These, and related Interfaces and base classes are defined in the Microsoft.AspNet.Identity.Core library
.
Moving up a level of abstraction, we can look at the Microsoft.AspNet.Identity.EntityFramework
library, which uses the components defined in …Identity.Core
to build the useful, ready-to-use classes commonly used in applications, and in particular by the Identity Samples project we have been using to explore Identity 2.0.
The <font color="#333333">…</font><font color="#333333">Identity.EntityFramework</font>
library gives us some Generic base classes, as well as a default concrete implementation for each. For example, <font color="#333333">…</font><font color="#333333">Identity.EntityFramework</font>
gives us the following generic base implementation for a class IdentityRole
:
Generic Base for IdentityRole:
public class IdentityRole<TKey, TUserRole> : IRole<TKey>
where TUserRole : IdentityUserRole<TKey>
{
public TKey Id { get; set; }
public string Name { get; set; }
public ICollection<TUserRole> Users { get; set; }
public IdentityRole()
{
this.Users = new List<TUserRole>();
}
}
As we can see, the above defines IdentityRole
in terms of generic type arguments for the key and UserRole
, and must implement the interface IRole<TKey>
. Note that Identity defines both an IdentityRole
class, as well as an IdentityUserRole
class, both of which are required to make things work. More on this later.
The Identity team also provides what amounts to a default implementation of this class:
Default Implementation of IdentityRole with non-generic type arguments:
public class IdentityRole : IdentityRole<string, IdentityUserRole>
{
public IdentityRole()
{
base.Id = Guid.NewGuid().ToString();
}
public IdentityRole(string roleName) : this()
{
base.Name = roleName;
}
}
Notice how the default implementation class is defined in terms of a string
key and a specific implementation of IdentityUserRole
?
This means that we can only pass strings as keys, and in fact the IdentityRole
model will be defined in our database with a string-type primary key. It also means that the specific, non-generic implementation of IdentityUserRole
will be what is passed to the type argument into the base class.
If we steal a page from the previous post, and take a look at the default type definitions provided by Identity 2.0, we find the following (it's not exhaustive, but these are what we will be dealing with later):
Default Identity 2.0 Class Signatures with Default Type Arguments:
public class IdentityUserRole
: IdentityUserRole<string>
public class IdentityRole
: IdentityRole<string, IdentityUserRole>
public class IdentityUserClaim
: IdentityUserClaim<string>
public class IdentityUserLogin
: IdentityUserLogin<string>
public class IdentityUser
: IdentityUser<string, IdentityUserLogin,
IdentityUserRole, IdentityUserClaim>, IUser, IUser<string>
public class IdentityDbContext
: IdentityDbContext<IdentityUser, IdentityRole, string,
IdentityUserLogin, IdentityUserRole, IdentityUserClaim>
public class UserStore<TUser>
: UserStore<TUser, IdentityRole, string, IdentityUserLogin,
IdentityUserRole, IdentityUserClaim>,
IUserStore<TUser>, IUserStore<TUser, string>, IDisposable
where TUser : IdentityUser
public class RoleStore<TRole>
: RoleStore<TRole, string, IdentityUserRole>, IQueryableRoleStore<TRole>,
IQueryableRoleStore<TRole, string>, IRoleStore<TRole, string>, IDisposable
where TRole : IdentityRole, new()
We can see that, starting with IdentityUserRole
, the types are defined with string keys, and as importantly, progressively defined in terms of the others. This means that if we want to use integer keys instead of string keys for all of our models (and corresponding database tables), we need to basically implement our own version of the stack above.
As in previous posts, we are going to use the Identity Samples project as our base for creating an Identity 2.0 MVC application. The Identity team has put together the Identity Samples project primarily (I assume) as a demonstration platform, but in fact it contains everything one might need (after a few tweaks, anyway) in order to build out a complete ASP.NET MVC project using the Identity 2.0 framework.
The concepts we are going to look at here apply equally well if you are building up your own Identity-based application from scratch. The ways and means might vary according to your needs, but in general, much of what we see here will apply whether you are starting from the Identity Samples project as a base, or "rolling your own" so to speak.
The important thing to bear in mind is that the generic base types and interfaces provided by Identity framework allow great flexibility, but also introduced complexity related to the dependencies introduced by the generic type arguments. In particular, the type specified as the key for each model must propagate through the stack, or the compiler gets angry.
The Identity Samples project is available on Nuget. First, create an empty ASP.NET Web Project (It is important that you use the "Empty" template here
, not MVC, not Webforms, EMPTY). Then open the Package Manager console and type:
Install Identity Samples from the Package Manager Console:
PM> Install-Package Microsoft.AspNet.Identity.Samples -Pre
This may take a minute or two to run. When complete, your will see a basic ASP.NET MVC project in the VS Solution Explorer. Take a good look around the Identity 2.0 Samples project, and become familiar with what things are and where they are at.
To get started, we need to re-engineer the basic model classes defined in the Identity Samples project, as well as add a few new ones. Because Identity Samples uses string-based keys for entity models, the authors, in many cases get away with depending upon the default class implementations provided by the framework itself. Where they extend, they extend from the default classes, meaning the string-based keys are still baked in to the derived classes.
Since we want to use integer keys for all of our models, we get to provide our own implementations for most of the models.
In many cases, this isn't as bad as it sounds. For example, there are a handful of model classes we need only define in terms of the generic arguments, and from there the base class implementation does the rest of the work.
NOTE:
As we proceed to modify/add new classes here, the error list in Visual Studio will begin to light up like a Christmas tree until we are done. Leave that be for the moment. If we do this correctly, there should be no errors left when we finish. IF there are, they will help us find things we missed.
In the Models => IdentityModels.cs file, we find the model classes used by the Identity Samples application. To get started, we are going to add our own definitions for IndentityUserLogin
, IdentityUserClaim
, and IdentityUserRole
. The Identity Samples project simply depended upon the default framework implementations for these classes, and we need our own integer based versions. Add the following to the IdentityModels.cs file:
Integer-Based Definitions for UserLogin, UserClaim, and UserRole:
public class ApplicationUserLogin : IdentityUserLogin<int> { }
public class ApplicationUserClaim : IdentityUserClaim<int> { }
public class ApplicationUserRole : IdentityUserRole<int> { }
Now, with that out of the way, we can define our own implementation of IdentityRole
. The Samples project also depended upon the framework version for IdentityRole
, and we are going to provide our own again. This time, though, there's a little more to it:
Integer-Based Definition for IdentityRole:
public class ApplicationRole : IdentityRole<int, ApplicationUserRole>, IRole<int>
{
public string Description { get; set; }
public ApplicationRole() { }
public ApplicationRole(string name)
: this()
{
this.Name = name;
}
public ApplicationRole(string name, string description)
: this(name)
{
this.Description = description;
}
}
Notice above, we have defined ApplicationRole
in terms of an integer key, and also in terms of our custom class ApplicationUserRole
? This is important, and will continue on up the stack as we re-implement the Identity classes we need for the Identity Samples project to run as expected.
Next, we are going to modify the existing definition for ApplicationUser
. Currently, the IdentitySamples.cs file includes a fairly simple definition for ApplicationUser
which derives from the default IdentityUser
class provided by the framework, which requires no type arguments because they have already been provided in the default implementation. We need to basically re-define ApplicationUser
starting from the ground up.
The existing ApplicationUser
class in the IdentityModels.cs file looks like this:
Existing ApplicationUser Class in IdentityModels.cs:
public class ApplicationUser : IdentityUser
{
public async Task<ClaimsIdentity>
GenerateUserIdentityAsync(UserManager<ApplicationUser> manager)
{
var userIdentity = await manager
.CreateIdentityAsync(this, DefaultAuthenticationTypes.ApplicationCookie);
return userIdentity;
}
}
We need to replace the above in its entirety with the following:
Custom Implementation for ApplicationUser:
public class ApplicationUser
: IdentityUser<int, ApplicationUserLogin,
ApplicationUserRole, ApplicationUserClaim>, IUser<int>
{
public async Task<ClaimsIdentity>
GenerateUserIdentityAsync(UserManager<ApplicationUser, int> manager)
{
var userIdentity = await manager
.CreateIdentityAsync(this, DefaultAuthenticationTypes.ApplicationCookie);
return userIdentity;
}
}
Once again, instead of deriving from the default Identity framework implementation for IdentityUser
, we have instead used the generic base, and provided our own custom type arguments. Also again, we have defined our custom ApplicationUser
in terms of an integer key, and our own custom types.
Also in the IdentityModels.cs file is an ApplicationDbContext
class.
Now that we have built out the basic models we are going to need, we also need to re-define the ApplicationDbContext
in terms of these new models. As previously, the existing ApplicationDbContext
used in the Identity Samples application is expressed only in terms of ApplicationUser
, relying (again) upon the default concrete implementation provided by the framework.
If we look under the covers, we find the ApplicationDbContext<ApplicationUser>
actually inherits from IdentityDbContext<ApplicationUser>,
which in turn is derived from:
<font color="#333333" face="Courier New"><code>IdentityDbContext<TUser, IdentityRole, string, IdentityUserLogin,
IdentityUserRole, IdentityUserClaim>
where TUser : Microsoft.AspNet.Identity.EntityFramework.IdentityUser</code></font>
In other words, we once again have a default concrete implementation which is defined in terms of the other default framework types, all of which further depend upon a string-based key.
In order to define a DbContext
which will work with our new custom types, we need to express our concrete class in terms of integer keys, and our own custom derived types.
Replace the existing ApplicationDbContext
code with the following:
Modified ApplicationDbContext:
public class ApplicationDbContext
public class ApplicationDbContext
: IdentityDbContext<applicationuser, applicationuserclaim="">
{
public ApplicationDbContext()
: base("DefaultConnection")
{
}
static ApplicationDbContext()
{
Database.SetInitializer<applicationdbcontext>(new ApplicationDbInitializer());
}
public static ApplicationDbContext Create()
{
return new ApplicationDbContext();
}
}
</applicationdbcontext></applicationuser,>
Once again, we have now expressed ApplicationDbContext
in terms of our own custom types, all of which use an integer key instead of a string.
I am willing to bet that if you take a look at the Visual Studio Error Window right now, it is likely a block of what seems to be endless red error indicators. As mentioned previously, that's fine for now - ignore it.
Identity framework defines the notion of User and Role stores for accessing user and role information. As with most everything else to this point, the default framework implementations for UserStore and RoleStore are defined in terms of the other default classes we have seen to this point - in other words, they won't work with our new custom classes. We need to express a custom User store, and a custom Role store, in terms of integer keys and our own custom classes.
Add the following to the IdentityModels.cs file:
Adding a Custom User Store:
public class ApplicationUserStore
: UserStore<ApplicationUser, ApplicationRole, int,
ApplicationUserLogin, ApplicationUserRole,
ApplicationUserClaim>, IUserStore<ApplicationUser, int>,
IDisposable
{
public ApplicationUserStore() : this(new IdentityDbContext())
{
base.DisposeContext = true;
}
public ApplicationUserStore(DbContext context)
: base(context)
{
}
}
public class ApplicationRoleStore
: RoleStore<ApplicationRole, int, ApplicationUserRole>,
IQueryableRoleStore<ApplicationRole, int>,
IRoleStore<ApplicationRole, int>, IDisposable
{
public ApplicationRoleStore()
: base(new IdentityDbContext())
{
base.DisposeContext = true;
}
public ApplicationRoleStore(DbContext context)
: base(context)
{
}
}
Re-Engineering Identity Configuration Classes
The Identity Samples project includes a file named App_Start => IdentityConfig.cs. In this file is a bunch of code which basically configures the Identity System for use in your application. The changes we introduced on our IdentityModels.cs file will cause issues here (and basically, throughout the application) until they are addressed in the client code.
In most cases, we will either be replacing a reference to a default Identity class with one of our new custom classes, and/or calling method overrides which allow the passing of custom type arguments.
In the IdentityConfig.cs file, we find an ApplicationUserManager
class, which contains code commonly called by our application to, well, manage users and behaviors. we will replace the existing code with the following, which essentially expresses ApplicationUserManager
in terms of integer keys, and our new custom UserStore
. If you look closely, we have added an int type argument to many of the method calls.
Customized ApplicationUserManager Class:
public class ApplicationUserManager : UserManager<ApplicationUser, int>
{
public ApplicationUserManager(IUserStore<ApplicationUser, int> store)
: base(store)
{
}
public static ApplicationUserManager Create(
IdentityFactoryOptions<ApplicationUserManager> options,
IOwinContext context)
{
var manager = new ApplicationUserManager(
new ApplicationUserStore(context.Get<ApplicationDbContext>()));
manager.UserValidator = new UserValidator<ApplicationUser, int>(manager)
{
AllowOnlyAlphanumericUserNames = false,
RequireUniqueEmail = true
};
manager.PasswordValidator = new PasswordValidator
{
RequiredLength = 6,
RequireNonLetterOrDigit = true,
RequireDigit = true,
RequireLowercase = true,
RequireUppercase = true,
};
manager.UserLockoutEnabledByDefault = true;
manager.DefaultAccountLockoutTimeSpan = TimeSpan.FromMinutes(5);
manager.MaxFailedAccessAttemptsBeforeLockout = 5;
manager.RegisterTwoFactorProvider("PhoneCode",
new PhoneNumberTokenProvider<ApplicationUser, int>
{
MessageFormat = "Your security code is: {0}"
});
manager.RegisterTwoFactorProvider("EmailCode",
new EmailTokenProvider<ApplicationUser, int>
{
Subject = "SecurityCode",
BodyFormat = "Your security code is {0}"
});
manager.EmailService = new EmailService();
manager.SmsService = new SmsService();
var dataProtectionProvider = options.DataProtectionProvider;
if (dataProtectionProvider != null)
{
manager.UserTokenProvider =
new DataProtectorTokenProvider<ApplicationUser, int>(
dataProtectionProvider.Create("ASP.NET Identity"));
}
return manager;
}
}
That's a lot of code there. Fortunately, modifying the ApplicationRoleManager
class is not such a big deal. We're essentially doing the same thing - expressing ApplicationRoleManager
in terms of integer type arguments, and our custom classes.
Replace the ApplicationRoleManager
code with the following:
Customized ApplicationRoleManager Class:
public class ApplicationRoleManager : RoleManager<ApplicationRole, int>
{
public ApplicationRoleManager(IRoleStore<ApplicationRole, int> roleStore)
: base(roleStore)
{
}
public static ApplicationRoleManager Create(
IdentityFactoryOptions<ApplicationRoleManager> options, IOwinContext context)
{
return new ApplicationRoleManager(
new ApplicationRoleStore(context.Get<ApplicationDbContext>()));
}
}
Modify The Application Database Initializer and Sign-in Manager
The ApplicationDbInitializer
class is what manages the creation and seeding of the backing database for our application. In this class we create a basic admin role user, and set up additional items such as the Email and SMS messaging providers.
The only thing we need to change here is where we initialize an instance of ApplicationRole
. In the existing code, the ApplicationDbInitializer
class instantiates an instance of IdentityRole
, and we need to create an instance of our own ApplicationRole
instead.
Replace the existing code with the following, or make the change highlighted below:
Modify the ApplicationDbInitializer Class:
public class ApplicationDbInitializer : DropCreateDatabaseIfModelChanges<ApplicationDbContext>
{
protected override void Seed(ApplicationDbContext context)
{
InitializeIdentityForEF(context);
base.Seed(context);
}
public static void InitializeIdentityForEF(ApplicationDbContext db) {
var userManager = HttpContext.Current.GetOwinContext()
.GetUserManager<ApplicationUserManager>();
var roleManager = HttpContext.Current.GetOwinContext()
.Get<ApplicationRoleManager>();
const string name = "admin@example.com";
const string password = "Admin@123456";
const string roleName = "Admin";
var role = roleManager.FindByName(roleName);
if (role == null) {
role = new ApplicationRole(roleName);
var roleresult = roleManager.Create(role);
}
var user = userManager.FindByName(name);
if (user == null) {
user = new ApplicationUser { UserName = name, Email = name };
var result = userManager.Create(user, password);
result = userManager.SetLockoutEnabled(user.Id, false);
}
var rolesForUser = userManager.GetRoles(user.Id);
if (!rolesForUser.Contains(role.Name)) {
var result = userManager.AddToRole(user.Id, role.Name);
}
}
}
Fixing up the ApplicationSignInManager
is even more simple. Just change the string
type argument in the class declaration to int
:
Modify the ApplicationSignInManager Class:
public class ApplicationSignInManager : SignInManager<ApplicationUser, int>
{
public ApplicationSignInManager(
ApplicationUserManager userManager, IAuthenticationManager authenticationManager) :
base(userManager, authenticationManager) { }
public override Task<ClaimsIdentity> CreateUserIdentityAsync(ApplicationUser user)
{
return user.GenerateUserIdentityAsync((ApplicationUserManager)UserManager);
}
public static ApplicationSignInManager Create(
IdentityFactoryOptions<ApplicationSignInManager> options, IOwinContext context)
{
return new ApplicationSignInManager(
context.GetUserManager<ApplicationUserManager>(), context.Authentication);
}
}
In the file App_Start => Startup.Auth there is a partial class definition, Startup. in the single method call defined in the partial class, there is a call to app.UseCookieAuthentication()
. Now that our application is using integers as keys instead of strings, we need to make a modification to the way the CookieAuthenticationProvider
is instantiated.
The existing call to app.UseCookieAuthentication
(found smack in the middle of the middle of the ConfigureAuth()
method) needs to be modified. Where the code calls OnVlidateIdentity
the existing code passes ApplicationUserManager
and ApplicationUser
as type arguments. What is not obvious is that this is an override which assumes a third, string type argument for the key (yep - we're back to that whole string keys thing again).
We need to change this code to call another override, which accepts a third type argument, and pass it an int
argument.
The existing code looks like this:
Existing Call to app.UseCookieAuthentication:
app.UseCookieAuthentication(new CookieAuthenticationOptions
{
AuthenticationType = DefaultAuthenticationTypes.ApplicationCookie,
LoginPath = new PathString("/Account/Login"),
Provider = new CookieAuthenticationProvider
{
OnValidateIdentity = SecurityStampValidator
.OnValidateIdentity<ApplicationUserManager, ApplicationUser>(
validateInterval: TimeSpan.FromMinutes(30),
regenerateIdentity: (manager, user)
=> user.GenerateUserIdentityAsync(manager))
}
});
We need to modify this code in a couple of non-obvious ways. First, as mentioned above, we need to add a third type argument specifying that TKey
is an int.
Less obvious is that we also need to change the name of the second argument from regenerateIdentity
to regenerateIdentityCallback
. Same argument, but different name in the overload we are using.
Also less than obvious is the third Func
we need to pass into the call as getUserIdCallback
. Here, we need to retreive a user id from a claim, which stored the Id as a string. We need to parse the result back into an int
.
Replace the existing code above with the following:
Modified Call to app.UseCookieAuthentication:
app.UseCookieAuthentication(new CookieAuthenticationOptions
{
AuthenticationType = DefaultAuthenticationTypes.ApplicationCookie,
LoginPath = new PathString("/Account/Login"),
Provider = new CookieAuthenticationProvider
{
OnValidateIdentity = SecurityStampValidator
.OnValidateIdentity<applicationusermanager, int="">(
validateInterval: TimeSpan.FromMinutes(30),
regenerateIdentityCallback: (manager, user)
=> user.GenerateUserIdentityAsync(manager),
getUserIdCallback: (claim) => int.Parse(claim.GetUserId()))
}
});
</applicationusermanager,>
With that, most of the Identity infrastructure is in place. Now we need to update a few things within our application.
The Models => AdminViewModels.cs file contains class definitions for a RolesAdminViewModel
and a UsersAdminViewModel
. In both cases, we need to change the type of the Id property from string to int:
Modify the Admin View Models:
public class RoleViewModel
{
public int Id { get; set; }
[Required(AllowEmptyStrings = false)]
[Display(Name = "RoleName")]
public string Name { get; set; }
}
public class EditUserViewModel
{
public int Id { get; set; }
[Required(AllowEmptyStrings = false)]
[Display(Name = "Email")]
[EmailAddress]
public string Email { get; set; }
public IEnumerable<SelectListItem> RolesList { get; set; }
}
A good many of the controller action methods currently expect an id argument of type string. We need to go through all of the methods in our controllers and change the type of the id argument from string to int.
In each of the following controllers, we need to change the existing Id from string to int as shown for the action methods indicated (we're only showing the modified method signatures here):
Account Controller:
public async Task<ActionResult> ConfirmEmail(int userId, string code)
Roles Admin Controller:
public async Task<ActionResult> Edit(int id)
public async Task<ActionResult> Details(int id)
public async Task<ActionResult> Delete(int id)
public async Task<ActionResult> DeleteConfirmed(int id, string deleteUser)
Users Admin Controller:
public async Task<ActionResult> Details(int id)
public async Task<ActionResult> Edit(int id)
public async Task<ActionResult> Delete(int id)
public async Task<ActionResult> DeleteConfirmed(int id)
Update the Create Method on Roles Admin Controller
Anywhere we are creating a new instance of a Role, we need to make sure we are using our new ApplicationRole
instead of the default IdentityRole
. Specifically, in the Create()
method of the RolesAdminController
:
Instantiate a new ApplicationRole Instead of IdentityRole:
[HttpPost]
public async Task<ActionResult> Create(RoleViewModel roleViewModel)
{
if (ModelState.IsValid)
{
var role = new ApplicationRole(roleViewModel.Name);
var roleresult = await RoleManager.CreateAsync(role);
if (!roleresult.Succeeded)
{
ModelState.AddModelError("", roleresult.Errors.First());
return View();
}
return RedirectToAction("Index");
}
return View();
}
Add Integer Type Argument to GetUserId() Calls
If we take a look at our Error list now, we see the preponderance of errors are related to calls to User.Identity.GetUserId()
. If we take a closer look at this method, we find that once again, the default version of GetUserId()
returns a string, and that there is an overload which accepts a type argument which determines the return type.
Sadly, calls to GetUserId()
are sprinkled liberally throughout ManageController
, and a few places in AccountController
as well. We need to change all of the calls to reflect the proper type argument, and the most efficient way to do this is an old fashioned Find/Replace.
Fortunately, you can use Find/Replace for the entire document on both ManageController
and AccountController
, and get the whole thing done in one fell swoop. Hit Ctrl + H, and in the "Find" box, enter the following:
Find all instances of:
Identity.GetUserId()
Replace with:
Identity.GetUserId<int>()
If we've done this properly, most of the glaring red errors in our error list should now be gone. There are a few stragglers, though. In these cases, we need to counter-intuitively convert the int Id back into a string.
There are a handful of methods which call to GetUserId()
, but regardless of the type the Id represents (in our case, now, an int
) want a string representation of the Id passed as the argument. All of these methods are found on ManageController
, and in each case, we just add a call to .ToString()
.
First, in the Index()
method of ManageController
, we find a call to AuthenticationManager.TwoFactorBrowserRemembered()
. Add the call to .ToString()
after the call to GetUserId()
:
Add Call to ToString() to TwoFactorBrowserRemembered:
public async Task<ActionResult> Index(ManageMessageId? message)
{
ViewBag.StatusMessage =
message == ManageMessageId.ChangePasswordSuccess ?
"Your password has been changed."
: message == ManageMessageId.SetPasswordSuccess ?
"Your password has been set."
: message == ManageMessageId.SetTwoFactorSuccess ?
"Your two factor provider has been set."
: message == ManageMessageId.Error ?
"An error has occurred."
: message == ManageMessageId.AddPhoneSuccess ?
"The phone number was added."
: message == ManageMessageId.RemovePhoneSuccess ?
"Your phone number was removed."
: "";
var model = new IndexViewModel
{
HasPassword = HasPassword(),
PhoneNumber = await UserManager.GetPhoneNumberAsync(User.Identity.GetUserId<int>()),
TwoFactor = await UserManager.GetTwoFactorEnabledAsync(User.Identity.GetUserId<int>()),
Logins = await UserManager.GetLoginsAsync(User.Identity.GetUserId<int>()),
BrowserRemembered = await AuthenticationManager
.TwoFactorBrowserRememberedAsync(User.Identity.GetUserId<int>().ToString())
};
return View(model);
}
Similarly, do the same for the RememberBrowser
method, also on ManageController
:
Add Call to ToString() to RememberBrowser Method:
[HttpPost]
public ActionResult RememberBrowser()
{
var rememberBrowserIdentity = AuthenticationManager
.CreateTwoFactorRememberBrowserIdentity(
User.Identity.GetUserId<int>().ToString());
AuthenticationManager.SignIn(
new AuthenticationProperties { IsPersistent = true },
rememberBrowserIdentity);
return RedirectToAction("Index", "Manage");
}
Lastly,the same for the LinkLogin()
and LinkLoginCallback()
methods:
Add Call to ToString() to LinkLogin():
[HttpPost]
[ValidateAntiForgeryToken]
public ActionResult LinkLogin(string provider)
{
return new AccountController
.ChallengeResult(provider, Url.Action("LinkLoginCallback", "Manage"),
User.Identity.GetUserId<int>().ToString());
}
Add Call to ToString() to LinkLoginCallback():
public async Task<ActionResult> LinkLoginCallback()
{
var loginInfo = await AuthenticationManager
.GetExternalLoginInfoAsync(XsrfKey, User.Identity.GetUserId<int>().ToString());
if (loginInfo == null)
{
return RedirectToAction("ManageLogins", new { Message = ManageMessageId.Error });
}
var result = await UserManager
.AddLoginAsync(User.Identity.GetUserId<int>().ToString(), loginInfo.Login);
return result.Succeeded ? RedirectToAction("ManageLogins")
: RedirectToAction("ManageLogins", new { Message = ManageMessageId.Error });
}
With that, we have addressed most of the egregious issues, and we basically taken a project built against a model set using all string keys and converted it to using integers. The integer types will be propagated as auto-incrementing integer primary keys in the database backend as well.
But there are still a few things to clean up.
Scattered throughout the primary identity controllers are a bunch of null checks against the Id values received as arguments in the method calls. If you rebuild the project, the error list window in Visual Studio should now contain a bunch of the yellow "warning" items about this very thing.
You can handle this in your preferred manner, but for me, I prefer to check for a positive integer value. We'll look at the Details()
method from the UserAdminController
as an example, and you can take it from there.
The existing code in the Details()
method looks like this:
Existing Details() Method from UserAdminController:
public async Task<ActionResult> Details(int id)
{
if (id == null)
{
return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
}
var user = await UserManager.FindByIdAsync(id);
ViewBag.RoleNames = await UserManager.GetRolesAsync(user.Id);
return View(user);
}
In the above, we can see that previously, the code checked for a null value for the (formerly) string-typed Id argument. Now that we are receiving an int
, the check for null is meaningless. Instead, we want to check for a positive integer value. If the check is true, then we want to process accordingly. Otherwise, we want to return the BadRequest
result.
In other words, we need to invert the method logic. Previously, if the conditional evaluated to true, we wanted to return the error code. Now, is the result is true, we want to proceed, and only return the error result if the conditional is false. So we're going to swap our logic around.
Replace the code with the following:
Modified Details() Method with Inverted Conditional Logic:
public async Task<ActionResult> Details(int id)
{
if (id > 0)
{
var user = await UserManager.FindByIdAsync(id);
ViewBag.RoleNames = await UserManager.GetRolesAsync(user.Id);
return View(user);
}
return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
}
We can do something similar for the other cases in UserAdminController
, RolesAdminController
, and AccountController
. Think through the logic carefully, and all should be well.
Several of the View Templates currently use the default IdentityRole model instead of our new, custom ApplicationRole
. We need to update the Views in Views => RolesAdmin to reflect our new custom model.
The Create.cshtml and Edit.cshtml Views both depend upon the RoleViewModel
, which is fine. However, the Index.cshtml, Details.cshtml, and Delete.cshtml Views all currently refer to IdentityRole
. Update all three as follows
The Index.cshtml View currently expects an IEnumerable<IdentityRole>
. We need to change this to expect an IEnumerable<ApplicationRole
> . Note that we need to include the project Models namespace as well:
Update the RolesAdmin Index.cshtml View:
@model IEnumerable<IdentitySample.Models.ApplicationRole>
All we need to change here is the first line, so I omitted the rest of the View code.
Similarly, we need to update the Details.cshtml and Delete.cshtml Views to expect ApplicationRole
instead of IdentityRole
. Change the first line in each to match the following:
Update the Details.cshtml and Delete.cshtml Views:
@model IdentitySample.Models.ApplicationRole
Obviously, if your default project namespace is something other than IdentitySamples
, change the above to suit.
Now that we have essentially re-implemented most of the Identity object models with our own derived types, it is easy to add custom properties to the ApplicationUser and/.or ApplicationRole models. All of our custom types already depend upon each other in terms of the interrelated generic type arguments, so we are free to simply add what properties we wish to add, and then update our Controllers, ViewModels, and Views accordingly.
To do so, review the previous post on extending Users and Roles, but realize all of the type structure stuff is already done. Review that post just to see what goes on with updating the Controllers, Views, and ViewModels.
The basic Identity Samples application is a great starting point for building out your own Identity 2.0 application. However, realize that, as a demo, there are some things built in that should not be present in production code. For example, the database initialization currently includes hard-coded admin user credentials.
Also, the Email confirmation and two-factor authentication functionality currently circumvents the actual confirmation and two-factor process, by including links on each respective page which short-circuit the process.
The above items should be addressed before deploying an actual application based upon the Identity Samples project.
We've taken a rather exhaustive look at how to modify the Identity Samples application to use integer keys instead of strings. Along the way, we (hopefully) gained a deeper understanding of the underlying structure in an Identity 2.0 based application. There's a lot more there to learn, but this is a good start.
My name is John Atten, and my username on many of my online accounts is xivSolutions. I am Fascinated by all things technology and software development. I work mostly with C#, Javascript/Node.js, Various flavors of databases, and anything else I find interesting. I am always looking for new information, and value your feedback (especially where I got something wrong!)