Click here to Skip to main content
15,892,965 members
Articles / Programming Languages / C++

RCF - Interprocess Communication for C++

Rate me:
Please Sign up or sign in to vote.
4.94/5 (147 votes)
25 Oct 2011CPOL20 min read 4.6M   8.4K   331  
A server/client IPC framework, using the C++ preprocessor as an IDL compiler.
#include <string>
#include <vector>

#include <boost/shared_ptr.hpp>
#include <boost/test/minimal.hpp>

#include <RCF/Idl.hpp>
#include <RCF/RcfServer.hpp>
#include <RCF/ObjectFactoryService.hpp>

#include <RCF/test/TransportFactories.hpp>
#include <RCF/test/ThreadGroup.hpp>
#include <RCF/util/CommandLine.hpp>
#include <RCF/util/PortNumbers.hpp>

namespace A {

    RCF_BEGIN( Calculator, "Calculator" )
        RCF_METHOD_R2(double, add, double, double)
        RCF_METHOD_R2(double, sub, double, double)
        RCF_METHOD_R2(double, mul, double, double)
        RCF_METHOD_R2(double, div, double, double)
        RCF_METHOD_V3(void, add, double, double, double&)
        RCF_METHOD_V3(void, sub, double, double, double&)
        RCF_METHOD_V3(void, mul, double, double, double&)
        RCF_METHOD_V3(void, div, double, double, double&)
        RCF_METHOD_V1(void, M_in, double)
        RCF_METHOD_V1(void, M_plus, double)
        RCF_METHOD_R0(double, RcM)
        RCF_METHOD_V1(void, RcM, double&)
    RCF_END( Calculator )

    RCF_BEGIN( X, "X" )
        RCF_METHOD_R0(int, f0)
        RCF_METHOD_R1(int, f1, int)
        RCF_METHOD_R2(int, f2, int, int)
        RCF_METHOD_R3(int, f3, int, int, int)
        RCF_METHOD_R4(int, f4, int, int, int, int)
        RCF_METHOD_R5(int, f5, int, int, int, int, int)
        RCF_METHOD_V0(void, f6)
        RCF_METHOD_V1(void, f7, int)
        RCF_METHOD_V2(void, f8, int, int)
        RCF_METHOD_V3(void, f9, int, int, int)
        RCF_METHOD_V4(void, f10, int, int, int, int)
        RCF_METHOD_V5(void, f11, int, int, int, int, int)
    RCF_END( X )

    RCF_BEGIN(Y, "Y")
        RCF_METHOD_R1(boost::int16_t, increment, const boost::int16_t &)
        RCF_METHOD_R1(boost::int32_t, increment, const boost::int32_t &)
        RCF_METHOD_R1(boost::int64_t, increment, const boost::int64_t &)

        RCF_METHOD_R1(boost::uint16_t, increment, const boost::uint16_t &)
        RCF_METHOD_R1(boost::uint32_t, increment, const boost::uint32_t &)
        RCF_METHOD_R1(boost::uint64_t, increment, const boost::uint64_t &)
    RCF_END(Y)

} //namespace A


namespace A {
namespace B {

class CalculatorDivideByZeroException : public std::exception {
public:
    CalculatorDivideByZeroException(std::string msg) : msg_(msg) {}
    ~CalculatorDivideByZeroException() throw() {}
    const char *what() const throw() { return msg_.c_str(); }
private:
    std::string msg_;
};

class Calculator {
public:
    Calculator() : M_(0) {}

    double add(double x, double y)        { return x+y; } 
    double sub(double x, double y)        { return x-y; }
    double mul(double x, double y)        { return x*y; }    
    double div(double x, double y)        { if (y==0) throw CalculatorDivideByZeroException("Divide by zero"); return x/y; }

    void add(double x, double y, double &z)    { z = x+y; }
    void sub(double x, double y, double &z)    { z = x-y; }
    void mul(double x, double y, double &z)    { z = x*y; }
    void div(double x, double y, double &z)    { if (y==0) throw int(5); z = x/y; }

    void M_in(double x)            { M_ = x; }
    void M_plus(double x)            { M_ += x; }
    double RcM()                { return M_; }
    void RcM(double &x)            { x = M_; }

private:
    Calculator(const Calculator &);
    Calculator &operator=(const Calculator &);
    double M_;
};

class X {
public:
    int f0() { return 1; }
    int f1(int) { return 1; }
    int f2(int, int) { return 1; }
    int f3(int, int, int) { return 1; }
    int f4(int, int, int, int) { return 1; }
    int f5(int, int, int, int, int) { return 1; }
    void f6() {}
    void f7(int) {}
    void f8(int, int) {}
    void f9(int, int, int) {}
    void f10(int, int, int, int) {}
    void f11(int, int, int, int, int) {}
};

class Y
{
public:
    boost::int16_t increment(const boost::int16_t &n) { return n+1; }
    boost::int32_t increment(const boost::int32_t &n) { return n+1; }
    boost::int64_t increment(const boost::int64_t &n) { return n+1; }

    boost::uint16_t increment(const boost::uint16_t &n) { return n+1; }
    boost::uint32_t increment(const boost::uint32_t &n) { return n+1; }
    boost::uint64_t increment(const boost::uint64_t &n) { return n+1; }
};


} // namespace B
} // namespace A

inline bool fuzzy_eq(double d1, double d2, float tolerance = .1) 
{
    return (d1-d2)*(d1-d2) < tolerance;
}

void testCalculatorClient(const RCF::I_ClientTransport &clientTransport)
{

    using namespace A;
    
    RcfClient<Calculator> calc1(clientTransport.clone());

    bool ok = RCF::createRemoteObject<Calculator>(calc1);
    BOOST_CHECK(ok);


    RcfClient<Calculator> calc2 = calc1;
    RcfClient<Calculator> calc3;
    calc3 = calc1;
    RcfClient<Calculator> calc4(calc3);
    
    double ret = 0;
    double x = 0;
    double y = 0;
    
    x = 1.5;
    y = 2.5;
    ret = calc1.add(x,y); BOOST_CHECK( fuzzy_eq(ret, x+y) );
    ret = calc1.sub(x,y); BOOST_CHECK( fuzzy_eq(ret, x-y) );
    ret = calc1.mul(x,y); BOOST_CHECK( fuzzy_eq(ret, x*y) );
    ret = calc1.div(x,y); BOOST_CHECK( fuzzy_eq(ret, x/y) );

    x = 1.5;
    y = 2.5;
    ret = calc2.add(x,y); BOOST_CHECK( fuzzy_eq(ret, x+y) );
    ret = calc2.sub(x,y); BOOST_CHECK( fuzzy_eq(ret, x-y) );
    ret = calc2.mul(x,y); BOOST_CHECK( fuzzy_eq(ret, x*y) );
    ret = calc2.div(x,y); BOOST_CHECK( fuzzy_eq(ret, x/y) );

    x = 1.5;
    y = 2.5;
    ret = calc3.add(x,y); BOOST_CHECK( fuzzy_eq(ret, x+y) );
    ret = calc3.sub(x,y); BOOST_CHECK( fuzzy_eq(ret, x-y) );
    ret = calc3.mul(x,y); BOOST_CHECK( fuzzy_eq(ret, x*y) );
    ret = calc3.div(x,y); BOOST_CHECK( fuzzy_eq(ret, x/y) );

    x = 1.5;
    y = 2.5;
    ret = calc4.add(x,y); BOOST_CHECK( fuzzy_eq(ret, x+y) );
    ret = calc4.sub(x,y); BOOST_CHECK( fuzzy_eq(ret, x-y) );
    ret = calc4.mul(x,y); BOOST_CHECK( fuzzy_eq(ret, x*y) );
    ret = calc4.div(x,y); BOOST_CHECK( fuzzy_eq(ret, x/y) );

    x = 3.14;
    y = -2.718;
    calc4.add(x,y, ret); BOOST_CHECK( fuzzy_eq(ret, x+y) );
    calc4.sub(x,y, ret); BOOST_CHECK( fuzzy_eq(ret, x-y) );
    calc4.mul(x,y, ret); BOOST_CHECK( fuzzy_eq(ret, x*y) );
    calc4.div(x,y, ret); BOOST_CHECK( fuzzy_eq(ret, x/y) );

    x = 1;
    y = 2;
    ret = 1;
    ret = calc1.RcM(); BOOST_CHECK( fuzzy_eq(ret, 0) );
    calc2.M_in(x);
    calc3.M_plus(y);
    calc4.RcM(ret); BOOST_CHECK( fuzzy_eq(ret, x+y) );
    calc1.M_in(0);
    ret = calc2.RcM(); BOOST_CHECK( fuzzy_eq(ret, 0) );

    {
        RcfClient<X> x(clientTransport.clone());
        x.f0();
        x.f1(1);
        x.f2(1,1);
        x.f3(1,1,1);
        x.f4(1,1,1,1);
        x.f5(1,1,1,1,1);
        x.f6();
        x.f7(1);
        x.f8(1,1);
        x.f9(1,1,1);
        x.f10(1,1,1,1);
        x.f11(1,1,1,1,1);
    }

    x = 1;
    y = 1;

    ret = 0;
    ret = calc4.add(1,1); BOOST_CHECK( fuzzy_eq(ret, 2) );
    ret = calc4.add(1,1); BOOST_CHECK( fuzzy_eq(ret, 2) );

    ret = 0;
    //calc4.setOneway(true);
    ret = calc4.add(RCF::Oneway, 1,1); BOOST_CHECK( fuzzy_eq(ret, 0) );
    ret = calc4.add(RCF::Oneway, 1,1); BOOST_CHECK( fuzzy_eq(ret, 0) );
    ret = calc4.add(RCF::Oneway, 1,1); BOOST_CHECK( fuzzy_eq(ret, 0) );

    ret = 0;
    //calc4.setOneway(false);
    ret = calc4.add(1,1); BOOST_CHECK( fuzzy_eq(ret, 2) );
    ret = calc4.add(1,1); BOOST_CHECK( fuzzy_eq(ret, 2) );
    

    // Test propagation of remote std::exception derived exeptions
    x = 1;
    y = 0;
    try 
    { 
      ret = calc1.div(x,y); 
      BOOST_CHECK(1==0); 
    } 
    catch(const RCF::RemoteException &e)
    {
        RCF_TRACE("RCF::RemoteException caught")(e);
        BOOST_CHECK(1==1);
    }
    
/*
#ifndef __BORLANDC__ // Scopeguard bug with Borland C++... causes theses tests to crash

    // Test propagation of remote non-std::exception derived exeptions
    x = 1;
    y = 0;
    ret = 0;
    try 
    { 
        calc.div(x,y, ret); 
        BOOST_CHECK(1==0); 
    } 
    catch(const RCF::RemoteException &e)
    {
        RCF_TRACE("RCF::RemoteException caught")(e);
        BOOST_CHECK(1==1);
    }

    // check that the server is still alive....
    x = 1;
    y = 1;
    ret = 0;
    ret = calc.div(x,y);
    BOOST_CHECK( fuzzy_eq(ret, 1) );

    {
        RcfClient<Calculator> mycalc(ip, port);
        x = 1;
        y = 1;
        ret = 0;
        ret = mycalc.div(x,y);
        BOOST_CHECK( fuzzy_eq(ret, 1) );
    }

#endif //! __BORLANDC__
*/
}

void testCalculatorClientReps(const RCF::I_ClientTransport &clientTransport, int nReps)
{
    try 
    {
        for (int i=0; i<nReps; ++i)
        {
            testCalculatorClient(clientTransport);
        }
    }
    catch(...)
    {
        BOOST_CHECK(1==0);
    }
}

int test_main(int argc, char **argv)
{
    util::CommandLine::getSingleton().parse(argc, argv);

    for (unsigned int i=0; i<RCF::getTransportFactories().size(); ++i)
    {
        RCF::TransportFactoryPtr transportFactoryPtr = RCF::getTransportFactories()[i];
        std::pair<RCF::ServerTransportPtr, RCF::ClientTransportAutoPtrPtr> transports = transportFactoryPtr->createTransports();
        RCF::ServerTransportPtr serverTransportPtr( transports.first );
        RCF::ClientTransportAutoPtr clientTransportAutoPtr( *transports.second );

        RCF::writeTransportTypes(std::cout, *serverTransportPtr, *clientTransportAutoPtr);

        RCF::RcfServer server(serverTransportPtr);

        unsigned int numberOfTokens = 50;
        unsigned int objectTimeoutS = 60;
        RCF::ObjectFactoryServicePtr objectFactoryServicePtr( new RCF::ObjectFactoryService(numberOfTokens, objectTimeoutS) );
        objectFactoryServicePtr->bind<A::Calculator, A::B::Calculator>();
        objectFactoryServicePtr->bind<A::X, A::B::X>();
        server.addService( RCF::ServicePtr(objectFactoryServicePtr) );

        A::B::Calculator calculator;
        server.bind<A::Calculator>(calculator);

        A::B::X x;
        server.bind<A::X>(x);

        A::B::Y y;
        server.bind<A::Y>(y);

        server.start();

        int nReps = 2;
        int nThreads = 5;

        ThreadGroup clients;
        for (int i=0; i<nThreads; ++i)
        {
            clients.push_back( ThreadPtr(new Thread( 
                boost::bind(&testCalculatorClientReps, boost::ref(*clientTransportAutoPtr), nReps))));
        }
        joinThreadGroup(clients);

        boost::int16_t i16 = 1;
        boost::int32_t i32 = 2;
        boost::int64_t i64 = 3;
        boost::uint16_t ui16 = 4;
        boost::uint32_t ui32 = 5;
        boost::uint64_t ui64 = 6;

        A::Y::RcfClient client( clientTransportAutoPtr->clone());

        BOOST_CHECK(client.increment(i16) == i16+1);
        BOOST_CHECK(client.increment(i32) == i32+1);
        BOOST_CHECK(client.increment(i64) == i64+1);
        BOOST_CHECK(client.increment(ui16) == ui16+1);
        BOOST_CHECK(client.increment(ui32) == ui32+1);
        BOOST_CHECK(client.increment(ui64) == ui64+1);
        
        server.stop();
    }

    return boost::exit_success;
}

By viewing downloads associated with this article you agree to the Terms of Service and the article's licence.

If a file you wish to view isn't highlighted, and is a text file (not binary), please let us know and we'll add colourisation support for it.

License

This article, along with any associated source code and files, is licensed under The Code Project Open License (CPOL)


Written By
Australia Australia
Software developer, from Sweden and now living in Canberra, Australia, working on distributed C++ applications. When he is not programming, Jarl enjoys skiing and playing table tennis. He derives immense satisfaction from referring to himself in third person.

Comments and Discussions