Validation Library using C# 3.0 Lambda Expressions






4.77/5 (9 votes)
A very easy to use business object validation library using C# 3.0 lambda expressions
Introduction
In Enterprise Library - Validation Application Block we have attributes to define complex validation expressions. But it is too complicated and slow, because it will use a lot of casting and boxing code under the hood. In C# 3.0, we have strongly typed lambda expressions so why not use them for validation logic?
Background
Imagine this business class:
public class Foo
{
public string Name { get; set; }
public int Index { get; set; }
}
Let's say that the Name
property can't be null
or empty and the Index
should be in 0
and 100
range. Now we can write these conditions to our code with lamda expressions:
[Validatable]
public class Foo
{
Func< Foo, bool > NameRule = f => !string.IsNullOrEmpty(f.Name);
Func< Foo, bool > IndexRule = f => f.Index >= 0 && f.Index <= 100;
public string Name { get; set; }
public int Index { get; set; }
}
And we only need a solution to do the validation checks, this is why I am here for today. ;)
The Validation Library
Attributes
ValidatableAttribute
: Indicates that a class or structure can be validated. Hasn't got any properties and inherited by derived classes.RuleAttribute
: Describes a rule.
Properties (all get/set)
string Name
: Name of the rule. Default is the name of the field or property of the rule expression.string Message
: The message will be received when the rule fails. Default:null
.bool Enabled
: Initializes rule enabled state. Default:true
.string[] AssociatedProperties
: Connects rule to properties by names. Default: empty.bool UseNamingConvention
: Automatically connects rule to a property by name of rule. E. g.:NameRule
will be linked toName
property,DateRule
will be linked toDate
property, etc. Default:true
.
Examples
[Validatable]
public class Foo
{
[Rule(Name = "NameRule")]
Func< Foo, bool > RName = f => !string.IsNullOrEmpty(f.Name);
[Rule(Name = "IndexRule", Enabled = false)
Func< Foo, bool > RIndex = f => f.Index >= 0 && f.Index <= 100;
public string Name { get; set; }
public int Index { get; set; }
}
RName
rule will be "NameRule
" and linked to Name
property by naming convention and RIndex
rule will be "IndexRule
" and linked to Index
property by naming convention and will be disabled.
[Validatable]
public class Foo
{
[Rule(AssociatedProperies = new string[] { "Name", "Index" })]
Func< Foo, bool > FooRule = f => !string.IsNullOrEmpty(f.Name) &&
f.Index >=0 && f.Index<=100;
public string Name { get; set; }
public int Index { get; set; }
}
Rule name will be "FooRule
" and it will linked to Name
and Index
properties. I will explain what rule to property link means later.
class Validator
This class validates any objects and using rules defined on them by Func< T, bool >
expressions.
Properties
public IEnumerable< RuleKey > EnabledRules { get; }
: Get enabled rules (see RuleKey structure below)public IEnumerable< RuleKey > DisabledRules { get; }
: Get disabled rules
Methods
ValidateResults Validate(object instance)
andValidateResults Validate(string id, object instance)
: Validates an object instance. If validation context identifier (id
argument) is not specified, it will beinstance.GetType().FullName
.void ValidateToSOAPFault(object instance)
andvoid ValidateToSOAPFault(string id, object instance)
: Same as above except this method will throwFaultException< ValidateResults >
instead of return a result object. Useful for WCF.public bool IsRuleEnabled(RuleKey ruleKey)
: Returnstrue
if the rule is enabled specified by theruleKey
(see below).public void EnableRule(RuleKey ruleKey)
: Enables rule specified by theruleKey
.public void DisableRule(RuleKey ruleKey)
: Disables rule specified by theruleKey
.public void EnableRule(RuleKey ruleKey)
: Enables rule specified by theruleKey
.public void NewEnabledRuleContext()
: Set all rules enabled state to declared value (onRuleAttribute.Enabled
property).public static object GetInstanceForPath(object validatedInstance, string path)
: Returns the object instance on validated object specified by the path (simple reflection, path can point to any member). SeeValidateResults
class description for path details.public static T GetInstanceForPath< T >(object validatedInstance, string path) where T : class
: Same as above but this one is typed.
Note: Enabled state context only applies to the Validator instance which these methods called on. For performance reasons, the Validator will not check whether the specified rule exists. It only registers these keys to an internal hashtable (see Validator.cs for implementation details).
Events
EventHandler< ValidationFailedEventArgs > ValidationFailed
: Occurs when the validation failedevent EventHandler< ValidationFailedEventArgs > ValidationFailedGlobal
: Occurs when the validation failed on any Validator instance
ValidationFailedEventArgs
has only ValidateResults Results
read-only property.
[DataContract] public class ValidateResults : IEnumerable< ValidateResult >
This class describes a validation result
Properties
public string ID { get; }
: Validation context identifier passed toValidator.Validate()
methodpublic bool IsValid { get; }
: Gets a flag that indicates whether the instance was validpublic ValidateResult[] Results { get; }
: Validation result descriptions (see later)
Methods
public bool IsRuleFailed(RuleKey ruleKey)
: Indicates whether the specified rule failed identified byruleKey
(see later)public ValidateResult GetResultForRule(RuleKey ruleKey)
: Returns validation description for specified rulebool IsRuleFailed(string rulePath)
: Gets a flag that indicates whether the rule was valid specified by rule path. The path is WPF like access to a rule member through property/field names in validated instance, e.g.:Company.Employees[0].NameRule
.ValidateResult GetResultForRule(string rulePath)
: Returns validation description for the rule specified by rule path.public bool IsPropertyFailed(string propertyPath)
: Gets a flag that indicates whether the property was valid specified by property path. The path is WPF like access to a rule member through property/field names in validated instance, e.g.:Company.Employees[0].Name
.public ValidateResult[] GetResultsForProperty(string propertyPath)
: Returns validation descriptions for the property specified by property path (a property can be linked to many rules withRuleAttribute
).
[DataContract] public sealed class ValidateResult : IComparable< ValidateResult >
This class describes a validation fail.
Properties
public RuleKey RuleKey { get; }
: Identifies the associated rule definition (see below)public string[] RulePaths { get; }
: Path to rules on object instances where these validation expressions failedpublic string[] PropertyPaths { get; }
: Path to linked properties on object instances where these validation expressions failedpublic string Message { get; }
: Message defined on rule withRuleAttribute.Message
property
public struct RuleKey : IEquatable< RuleKey >, IComparable< RuleKey >
It is a closed structure. Overrides the ==
, !=
operators and the explicit string
casting operator.
Constructor
public RuleKey(Type type, string ruleName)
: Thetype
is the containingtype
(class or struct) and theruleName
is the name of the rule. TheRuleKey
struct uses an internalstring
representation of this information so it can travel across service boundaries with no problems.
Example
[Validatable]
public class Foo
{
Func< Foo, bool > NameRule = f => !string.IsNullOrEmpty(f.Name);
[Rule(Name = "IndexRule")
Func< Foo, bool > RIndex = f => f.Index >=0 && f.Index<=100;
public string Name { get; set; }
public int Index { get; set; }
}
// ...
RuleKey keyForNameRule = new RuleKey(typeof(Foo), "NameRule");
RuleKey keyIndexRule = new RuleKey(typeof(Foo), "IndexRule");
Properties
public string RuleName { get; } /* - */ public Type Type { get; }
: Name and containing type of the rule. Only accessible (notnull
) if the containing type's assembly is loaded.
Using the Code
Here is a sample business class from our highly normalized partner registry service:
[Validatable]
[DataContract]
[Serializable]
public class PublicPlaceModel : EntityModel
{
#region Rules
public static Func< PublicPlaceModel, bool > PublicPlaceUIDRule =
m => m.PublicPlaceUID != Guid.Empty;
public static Func< PublicPlaceModel, bool > SettlementUIDRule =
m => m.SettlementUID != Guid.Empty;
public static Func< PublicPlaceModel, bool > PublicPlaceNameIDRule =
m => m.PublicPlaceNameID > 0;
public static Func< PublicPlaceModel, bool > PublicPlaceTypeIDRule =
m => m.PublicPlaceTypeID > 0;
public static Func< PublicPlaceModel, bool > PostalCodeRule =
m => GeoRules.IsValidPostalCode(m.PostalCode);
//Complex business rule from two properties
[Rule(AssociatedProperties = new string[] { "PostalCode", "SettlementPart" })]
public static Func< PublicPlaceModel, bool > PublicPlaceStateRule =
m => GeoRules.CheckPublicPlaceState(m.PostalCode, m.SettlementPart);
#endregion
//Validated on base class
public Guid? PublicPlaceUID
{
get { return base.EntityUID; }
set { base.EntityUID = value; }
}
[DataMember]
public Guid SettlementUID;
[DataMember]
public int PublicPlaceNameID;
[DataMember]
public int PublicPlaceTypeID;
[DataMember]
public int? PostalCode;
[DataMember]
public string SettlementPart;
}
// Somewhere on service facade implementation:
// We have a request WCF message (message contract)
// which has a public property of type PublicPlaceModel:
// SomeResult, SomeRequest are WCF message contracts
public SomeResult DoSomething(SomeRequest request)
{
Validator v = new Validator();
v.ValidateToSOAPFault(request);
// If SOAP request is invalid a FaultException< ValidateResults >
// will be thrown and returned to consumer.
// Ok. Request is valid.
// Do stuff.
return result; // SomeResult message
}
Validating Complex Object Graphs
It is possible. Every object instance will be validated, but the property and rule paths will only indicate the first occurrence of failed validation. Rules will be checked in an object instance order by names followed by instance's properties and fields which type is [Validatable]
followed by properties and fields which type is Array[T]
or IEnumerable< T >
where T
is [Validatable]
. Here is a unit test that describes this functionality. I hope this will be understandable enough.
Classes to be validated:
[Validatable]
public class AB
{
public static Func< AB, bool > aRule = abc => abc.a != null;
public static Func< AB, bool > a2Rule = abc => abc.a2 != null;
public static Func< AB, bool > fooRule = abc => !string.IsNullOrEmpty(abc.foo);
public B[] bs;
public A a;
public A a2;
public string foo;
}
[Validatable]
public class A
{
public static Func< A, bool > bRule = ac => ac.b != null;
public B b;
}
[Validatable]
public class B
{
public static Func< B, bool > nameRule = cb => !string.IsNullOrEmpty(cb.name);
public string name;
public AB ab;
}
[Validatable]
public class C
{
public B b;
public A a;
}
Unit Test
[TestMethod()]
public void ComplexObjectGraphTest()
{
// Make a complicated graph of object instances:
A aTest = new A { b = new B() };
A aTest2 = new A { b = new B() };
AB abTest = new AB { a = aTest, a2 = aTest2 };
C cTest = new C { b = aTest.b, a = aTest };
aTest.b.ab = abTest;
abTest.bs = new B[] { new B { name = "helo" }, new B { ab = abTest } };
// Create a validator instance:
Validator v = new Validator();
// Test 'em!
ValidateResults abResults = v.Validate(abTest);
Assert.IsFalse(abResults.IsValid);
// Check property paths. This will be same as rule paths so it will be enough.
// Two rule failed.
Assert.AreEqual(2, abResults.Results.Length);
// First instance occurrences using the search rule above:
// fooRule on foo field of AB class instance abTest.
Assert.AreEqual(1, abResults.Results[0].PropertyPaths.Length);
// 3 B class instance nameRule on name field.
Assert.AreEqual(3, abResults.Results[1].PropertyPaths.Length);
Assert.IsTrue(abResults.IsPropertyFailed("foo"));
Assert.IsTrue(abResults.IsPropertyFailed("a.b.name"));
Assert.IsTrue(abResults.IsPropertyFailed("a2.b.name"));
Assert.IsTrue(abResults.IsPropertyFailed("bs[1].name"));
// And so on with this logic:
//A Test
ValidateResults aResult = v.Validate(aTest);
Assert.IsFalse(aResult.IsValid);
Assert.AreEqual(2, abResults.Results.Length);
Assert.AreEqual(1, abResults.Results[0].PropertyPaths.Length);
Assert.AreEqual(3, abResults.Results[1].PropertyPaths.Length);
Assert.IsTrue(aResult.IsPropertyFailed("b.ab.foo"));
Assert.IsTrue(aResult.IsPropertyFailed("b.ab.a2.b.name"));
Assert.IsTrue(aResult.IsPropertyFailed("b.ab.bs[1].name"));
Assert.IsTrue(aResult.IsPropertyFailed("b.name"));
//C Test
ValidateResults cResult = v.Validate(cTest);
Assert.IsFalse(cResult.IsValid);
Assert.AreEqual(2, abResults.Results.Length);
Assert.AreEqual(1, abResults.Results[0].PropertyPaths.Length);
Assert.IsTrue(aResult.IsPropertyFailed("b.ab.foo"));
Assert.IsTrue(aResult.IsPropertyFailed("b.ab.a2.b.name"));
Assert.IsTrue(aResult.IsPropertyFailed("b.ab.bs[1].name"));
Assert.IsTrue(aResult.IsPropertyFailed("b.name"));
}
If the object instance graph is a tree where every instance is identical (like WCF message contracts), this path information will be very useful of course.
Validating IEnumerables
This can be done. If you pass instances of IEnumerable< T >
to a Validator where T
is [Validatable]
every item in the collection will be validated. The rule/property path information is going to be something like this:
// Path starts with an indexer:
Assert.AreEqual("[0].name", results.Results[0].PropertyPath[0]);
Assert.AreEqual("[2].name", results.Results[0].PropertyPath[1]);
Points of Interest
The implementation relies heavily on LINQ, so feel welcome to analyze it. For example, here is a code snippet of looking for rule expressions using reflection along with LINQ (ValidationRegistry.cs):
private static RuleMetadata[] GetRulesOf(Type type)
{
// Get rule expression properties query :
var piQuery = from pi in type.GetProperties(BindingFlags.Public |
BindingFlags.DeclaredOnly |
BindingFlags.GetProperty |
BindingFlags.Instance |
BindingFlags.Static) // Reflect them
// Only looking for delegates
where pi.PropertyType.IsSubclassOf(typeof(Delegate))
// Getting built-in Invoke method
let invoke = pi.PropertyType.GetMethod("Invoke")
let pars = invoke.GetParameters() // Getting Invoke parameters
where invoke.ReturnType == typeof(bool) &&
pars.Length == 1 &&
pars[0].ParameterType == type // Only selecting Func< T, bool> ones
select new RuleMetadata(pi); // Generating metadata from property info
// Same query for fields :
var miQuery = from mi in type.GetFields(BindingFlags.Public |
BindingFlags.DeclaredOnly |
BindingFlags.GetField |
BindingFlags.Instance |
BindingFlags.Static)
where mi.FieldType.IsSubclassOf(typeof(Delegate))
let invoke = mi.FieldType.GetMethod("Invoke")
let pars = invoke.GetParameters()
where invoke.ReturnType == typeof(bool) &&
pars.Length == 1 &&
pars[0].ParameterType == type
select new RuleMetadata(mi);
// Run queries, concat the results, sort them and
// return an array from the result set.
return piQuery.Concat(miQuery).OrderBy(meta => meta.ruleKey).ToArray();
}
Conclusion
First of all, sorry about my funny English (which is rather Hungrish). :) I've been reading tons of English documentation but I have not got enough opportunity to speak in it. I hope this will be understandable enough.
There is nothing easier than using this code. Simply define Func< T, bool >
expression rules on public
fields or properties (can be instance or static) on your business classes, create an instance of Validator, set enabled states of rules if they apply, and call the Validate
method. I've been working on a configurable version of this library where you can define rule expressions in app.config or web.config sections based on downloadable Visual Studio 2008 LINQ Samples - DynamicQuery/Dynamic.cs.
I've included some common rule definitions to my project (email, URL, string length). See Rules.cs for details. E.g.:
[Validatable]
public class SomeClass
{
public static Func< SomeClass, bool > EMailRule = sc => Rules.EmailRule(sc.EMail);
public string EMail { get; set; }
}
References
History
- Dec. 19. 2007 - First post: proof-of-concept release